LECTURE 1

Date of Lecture: January 4, 2021
The symbol is for flagging a cautionary comment or a tricky argument. It occurs in the margins and is Knuth's version of Bourbaki's "dangerous bend symbol".

An n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ of symbols (x_{i} not necessarily real or complex numbers) will also be written as a column vector when convenient. Thus

$$
\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

A map \boldsymbol{f} from a set S to a product set $T_{1} \times \cdots \times T_{n}$ will often be written as an n-tuple $\boldsymbol{f}=\left(f_{1}, \ldots, f_{n}\right)$, with f_{i} a map from S to T_{i}, and hence, by the above convention, as a column vector

$$
\boldsymbol{f}=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right] .
$$

(See Remark 2.2.2 of Lecture 5 of ANA2.)
The default norm on Euclidean spaces of the form \mathbf{R}^{n} is the Euclidean norm $\left\|\|_{2}\right.$ and we will simply denote it as $\|\|$. The space of \mathbf{R}-linear transformations from \mathbf{R}^{n} to \mathbf{R}^{m} will be denoted $\operatorname{Hom}_{\mathbf{R}}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ and will be identified in the standard way with the space of $m \times n$ real matrices $M_{m, n}(\mathbf{R})$ and the operator norm ${ }^{1}$ on both spaces will be denoted $\|\|$.

Note that $\left(x_{1}, \ldots, x_{n}\right) \neq\left[x_{1} \ldots x_{n}\right]$. Each side is the transpose of the other.

1. Ordinary Differential Equations

We give a formulation of the problems we will study in this course.
1.1. What is an Ordinary Differential Equation? Ordinary Differential Equations (ODEs) in their simplest form are equations of the form

$$
\begin{equation*}
F\left(t, u(t), u^{\prime}(t), \ldots, u^{(n)}(t)\right)=0 \tag{1.1.1}
\end{equation*}
$$

where $F: I \times U \rightarrow \mathbf{R}$ us a function, with I an interval in \mathbf{R}, U an open subset of \mathbf{R}^{n+1} and the "unknown" to be found is a function $u: I \rightarrow \mathbf{R}$ which satisfies the above equation. The above is a differential equation of order n. We often work in a situation where the domain of F is not necessarily a rectangle of the form $I \times \mathbf{R}^{n+1}$ but an open set in \mathbf{R}^{n+2}. The exact formulation will be clarified later.

In this course we assume (1.1.1) can be written in the form

$$
\begin{equation*}
u^{(n)}=f\left(t, u, u^{\prime}, \ldots, u^{(n-1)}\right) \tag{1.1.2}
\end{equation*}
$$

[^0]Example 1.1.3. Here is a standard form of an ODE from more elementary courses:

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y=0 \quad(x>0)
$$

This can be written in the form (1.1.1) by setting

$$
F(a, b, c, d)=a^{2} d+3 a c+4 b
$$

and noting that the differential equation then is

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0
$$

If $a>0$, the equation $F(a, b, c, d)=0$ can be written as

$$
d=f(a, b, c)
$$

where

$$
f(a, b, c)=\frac{1}{a^{2}}(-3 a c-4 b)
$$

The given ODE can then be re-written in the form (1.1.2) as

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), \quad(x>0)
$$

where f is as above.
1.1.4. The dot notation. We often use the familiar "dot notation" to denote derivatives. In greater detail, suppose $\boldsymbol{\varphi}: I \rightarrow U$ is a differentiable map from an interval I in \mathbf{R} to an open subset U of \mathbf{R}^{n}. Then

$$
\dot{\varphi}=\frac{\mathrm{d}}{\mathrm{~d} t} \varphi
$$

1.2. Vector first order differential equations. A system of first order differential equations is a system of the form

$$
\left\{\begin{align*}
\frac{\mathrm{d} x_{1}}{\mathrm{~d} t} & =v_{1}\left(t, x_{1}, \ldots, x_{n}\right) \tag{1.2.1}\\
\frac{\mathrm{d} x_{2}}{\mathrm{~d} t} & =v_{2}\left(t, x_{1}, \ldots, x_{n}\right) \\
& \vdots \\
\frac{\mathrm{d} x_{n}}{\mathrm{~d} t} & =v_{n}\left(t, x_{1}, \ldots, x_{n}\right)
\end{align*}\right.
$$

where $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$ is an \mathbf{R}^{n}-valued function on some open subset Ω of \mathbf{R}^{n+1}. Writing $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, this becomes an equation of the form

$$
\begin{equation*}
\dot{\boldsymbol{x}}=\boldsymbol{v}(t, \boldsymbol{x}) \tag{1.2.2}
\end{equation*}
$$

Equation (1.2.2) is regarded as a first order vector differential equation. To ensure existence of solutions we have to put conditions on the function \boldsymbol{v}. A solution is by definition a function $\varphi: I \rightarrow \mathbf{R}^{n}$ where I is an interval (usually an open interval, or else, one uses one-sided derivatives at the boundary point of I which lie in I) such that $(t, \boldsymbol{\varphi}(t)) \in \Omega$ for $t \in I$ and $\dot{\boldsymbol{\varphi}}(t)=v(t, \boldsymbol{\varphi}(t))$ for all $t \in I$.
1.3. Converting an $n^{\text {th }}$ order scalar ODE into a first order vector ODE. Consider the $\operatorname{ODE}(1.1 .2)$, i.e. the equation $u^{(n)}=f\left(t, u, u^{\prime}, \ldots, u^{(n-1)}\right)$ where f is a function on open set Ω of \mathbf{R}^{n+1}. Let $\boldsymbol{w}=\left(w_{1}, \ldots, w_{n}\right): \Omega \rightarrow \mathbf{R}^{n}$ be the function given by

$$
\boldsymbol{w}\left(t, y_{1}, \ldots, y_{n}\right)=\left(y_{2}, \ldots, y_{n}, f\left(t, y_{1}, \ldots, y_{n}\right)\right)
$$

Consider the first order vector DE:

$$
\begin{equation*}
\dot{\boldsymbol{x}}=\boldsymbol{w}(t, \boldsymbol{x}) \tag{1.3.1}
\end{equation*}
$$

It is easy to see that if $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ is a solution of (1.3.1), then φ_{1} is a solution of (1.1.2). Conversely, if ψ is a solution of (1.1.2), then $\varphi=\left(\psi, \dot{\psi}, \ddot{\psi}, \ldots, \psi^{(n-1)}\right)$ is a solution of (1.3.1). These two processes are inverses of each other. Note that (1.3.1) is of the form (1.1.2).

The fact that an $n^{\text {th }}$ order scalar ODE can be converted to a first order vector ODE allows us to focus our study on the latter, i.e equations of the form (1.2.2). In fact there is a further simplification. It will turn out that it will be enough to study equations in which \boldsymbol{v} does not depend on t, i.e. equations of the form

$$
\begin{equation*}
\dot{\boldsymbol{x}}=\boldsymbol{v}(\boldsymbol{x}) \tag{1.3.2}
\end{equation*}
$$

Such differential equations are called autonomous differential equations
An important theorem we will prove in the course is the following.
Theorem 1.3.3. Suppose $\boldsymbol{v}: \Omega \rightarrow \mathbf{R}^{n}$ is \mathscr{C}^{1}, where Ω is an open subset of \mathbf{R}^{n+1} and suppose we have a point $\left(t_{0}, \boldsymbol{x}_{0}\right) \in \Omega$. Then the initial value problem (IVP)

$$
\dot{\boldsymbol{x}}=\boldsymbol{v}(t, \boldsymbol{x}), \quad \boldsymbol{x}\left(t_{0}\right)=\boldsymbol{x}_{0}
$$

has a unique solution in a neighbourhood of t_{0}.
We will show that there is a "maximal interval of existence" $J_{\max }=\left(\omega_{-}, \omega_{+}\right)$ around t_{0} on which the solution to the IVP exists. In other words we can find $\varphi_{\text {max }}: J_{\text {max }} \rightarrow \Omega$ which is \mathbf{C}^{1} such that

$$
\dot{\boldsymbol{\varphi}}_{\max }(t)=\boldsymbol{v}\left(t, \boldsymbol{\varphi}_{\max }(t)\right), \quad \boldsymbol{\varphi}_{\max }\left(t_{0}\right)=\boldsymbol{x}_{0} \quad\left(t \in J_{\max }\right)
$$

and such that if I is another interval of existence for the IVP, with $\varphi: I \rightarrow \Omega$ a solution to the IVP on I^{2} then

- $I \subset J_{\max }$
- $\varphi=\left.\varphi_{\max }\right|_{I}$.

Note that $\boldsymbol{\varphi}_{\max }$ depends upon the initial data $\left(t_{0}, \boldsymbol{x}_{0}\right)$. Thus $\boldsymbol{\varphi}_{\max }=\boldsymbol{\psi}\left(t_{0}, \boldsymbol{x}_{0}, t\right)$. The time point t_{0} is called the initial time and \boldsymbol{x}_{0} the initial state or initial phase. In general, the \boldsymbol{x} 's vary in a phase space (also called a phase space), and the t 's in time space.
1.3.4. Let U be open in \mathbf{R}^{n} and I an open interval in \mathbf{R}. Let $\left(t_{0}, \boldsymbol{x}_{0}\right) \in I \times U$ and suppose $\boldsymbol{v}: I \times U \rightarrow \mathbf{R}^{n}$ is a \mathscr{C}^{1} function. We ate generally interested in this course in the IVP as given in Theorem 1.3.3. In this case, with $\Omega=I \times U$, we can separate the time interval I (for the action represented by the IVP) from the phase space (also known as the state space) U. The set $I \times U$ is called extended phase space, and a solution to the IVP (or the ODE) is often called an integral curve

[^1]
Abstract

About these notes. This lecture was given on January 4, 2021. These course notes are a reasonably faithful record of the lectures given via zoom at the Chennai Mathematical Institute (CMI) in the January-April semester of 2020-21. The course is Differential equations, a core course for B.Sc second year students at CMI. If you have comments on these notes, or on related course material, please send an email to pramath@cmi.ac.in.

[^0]: ${ }^{1}$ See $\S \S 2.1$ of Lecture 5 of ANA2.

[^1]: ${ }^{2}$ This implies $t_{0} \in I, \dot{\boldsymbol{\varphi}}(t)=\boldsymbol{v}(t, \boldsymbol{\varphi}(t))$, for $t \in I$, and $\boldsymbol{\varphi}\left(t_{0}\right)=\boldsymbol{x}_{0}$

