
DEQN COOKBOOK - II

Notations. For a non-negative integer n, we write C n for C n(R), with the under-
standing that C 0 denotes the vector space of continuous functions on R. Set

D =
d

dx
.

We regard D as a linear transformation on C 1 with values in C 0. Note that
D(C n) ⊂ C n−1 of C 1 for n ≥ 1. Composing and iterating, we have a linear

transformation Dn : C n → C 0, with Dnf = dn

dxn f . Note that for Dj(C n) ⊂ C n−j

for n ≥ j. It follows that if p(T ) =
∑n
j=0 an−jT

j ∈ R[T ] is a polynomial of degree

n (so that a0 6= 0), then we can form the polynomial p(D) and regard it as an
linear transformation on C n with values in C 0. Thus p(D) : C n → C 0. Moreover,
p(D)(Cm) ⊂ Cm−n for m ≥ n. In explicit terms

p(D)f = a0f
(n) + a1f

(n−1) + · · ·+ an−1f
′ + anf (f ∈ C n).

It is straightforward to verify that

(1) p(D)erx = p(r)erx.

In fact, a little thought shows that (1) remains true even if r ∈ C since

d

dx
(eαx(cos(βx) + i sin(βx))) = (α+ iβ)(eαx(cos(βx) + i sin(βx))).

A linear differential equation with constant coefficients of order n is a differential
equation of the form

p(D)y = g

where g is a continuous function on R and (as before) p(T ) =
∑n
j=0 an−jT

j ∈ R[T ]
is a polynomial of degree n. In more explicit terms, this DE is

a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = g.

Such a DE is said to be (additionally) homogeneous if g = 0. In other words a
homogeneous linear differential equation with constant coefficients is of the form
(with p as above)

p(D)y = 0

or

a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = 0.

The polynomial p(T ) ∈ R[T ] is called the characteristic polynomial of the DE
p(D)y = 0.
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Homogenous linear DE’s with constant coefficients. Let p(T ) be be a real
polynomial of degree n, say p(T ) =

∑n
j=0 an−jT

j and consider the again the ho-
mogenous DE

(2) p(D)y = 0.

In other words, the solution space is exactly the null space of the linear transfor-
mation p(D) : C n → C 0. Keeping (1) in mind, we first solve the equation

(3) p(t) = 0.

This is the so called characteristic equation or auxiliary equation of (2). Let r
is a real root of (3) of multiplicity m, then erx, xerx, . . . , xm−1erx are m linearly
independent solutions of (2). If r = α + iβ is a non-real root of (3), i.e. β 6= 0,
then its complex conjugate r̄ = α − iβ is also a root of (3). Moreover if m is the
multiplicity of the root r, then it is also the multiplicity of the root r̄. In this
case xjeαx cos(βx), xjeαx sin(βx), j = 0, . . . ,m − 1 give 2m linearly independent
solutions of (2).

In general, if r1, . . . , rk are the real roots of (3) with multiplicities m1, . . . ,mk

respectively, and α1 + iβ1, α1 − iβ1, . . . αl + iβl, αi − iβl, the non-real roots of (3)
written in conjugate pairs with multiplicities µ1, . . . , µl respectively (µj being the
multiplicity of the conjugate pair αj + iβj , αj − iβj), then the collection R∪C ∪S
forms a basis for the vector space of solutions of (2), i.e. of the null space of p(D),
where

R =

k⋃
i=1

{
erix, xerix, . . . , xmi−1erix

}
C =

l⋃
j=1

{
eαjx cos(βjx), xeαjx cos(βjx), . . . , xµj−1eαjx cos(βjx)

}

S =

l⋃
j=1

{
eαjx sin(βjx), xeαjx sin(βjx), . . . , xµj−1eαjx sin(βjx)

}
.

The proofs of the statements will take a few lectures in class. Note that

k + 2

l∑
j=1

µj = n.

As a (somewhat extreme) example, consider the eighth order DE:

y(8) + 4y(7) + 7y(6) + 6y(5) − 6y(3) − 7y′′ − 4y′ − y = 0.

The characteristic equation is

r8 + 4r7 + 7r6 + 6r5 − 6r3 − 7r2 − 4r − 1 = 0.

If we denote the characteristic polynomial by p, then one checks that the factori-
sation of p into a product of irreducible polynomials over R is:

p(r) = r8 + 4r7 + 7r6 + 6r5 − 6r3 − 7r2 − 4r − 1 = (r − 1)(r + 1)3(r2 + r + 1)2.

The complex roots then are r = 1 with multiplicity 1, r = −1 with multiplicity 3,

r = − 1
2 + i

√
3
2 with multiplicity 2, and r = − 1

2 − i
√
3
2 with multiplicity 2. According
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to the recipe we have given, the general solution of p(D)y = 0 is

y = c1e
x + (c2 + c3x+ c4x

2)e−x + (c5 + c6x)e−(1/2)x cos(
√
3
2 x)

+ (c7 + c8x)e−(1/2)x sin(
√
3
2 x)

where the ci, i = 1, . . . , 8, are arbitrary constants.

The method of undetermined coefficients. Consider a linear DE

(4) p(D)y = g

where p ∈ R[T ] is a polynomial of degree n and g is a function of the form

g(x) = eαx
(
Pa(x) cos(βx) +Qb(x) sin(βx)

)
where Pa is a polynomial of degree a and Qb a polynomial of degree b. Let d =
max(a, b). Note, it is possible for β to equal zero, in which case g(x) = eαxPa(x). If
r = α+ iβ is not a root of the characteristic polynomial, then a particular solution
is of the form

yp = eαx
(
A(x) cos(βx) +B(x) sin(βx)

)
where Aand B are polynomials of degree d. More generally, if we regard a non-root
of p as a root with multiplicity zero, then the general form of a particular solution
is

yp = xseαx
(
A(x) cos(βx) +B(x) sin(βx)

)
where s is the multiplicity of r = α + iβ as a root the characteristic polynomial,
and A and B are polynomials of degree d.

If s 6= 0, i.e. if r = α + iβ is a root of p, then the equation is a classified as a
resonance case. If r is not a root of p, then we are in the non-resonance case. The
coefficients of A and B can be determined by considering the identity

p(D)yp = eαx
(
Pa(x) cos(βx) +Qb(x) sin(βx)

)
and comparing the coefficients of cos(βx) and sin(βx) on both sides (after cancelling
the nowhere vanishing function eαx from both sides).

The principle of superposition. Consider the DE p(D)y = g, where as before p(T )
is a polynomial of degree n (or more generally a “linear differential operator”)
and g a continuous function on R. Suppose g = g1 + g2, where g1 and g2 are
continuous functions on R. If yi is a solution of p(D)y = gi, i = 1, 2, then y1 + y2
is clearly a solution of p(D)y = g. This obvious observation is called the principle
of superposition.

Complementary solutions and the particular solutions. In the DE p(D)y = g dis-
cussed above, the general solution of the associated homogeneous DE, namely,
p(D)y = 0, is called the complementary solution to the DE. It is not a solution
to the DE (unless g ≡ 0), and is denoted yc. Any solution to the given DE is called
a particular solution and once one picks one, it is usually denoted yp (where the
subscript p has nothing to do with the polynomial p). The general solution to the
given DE is then y = yc + yp.

Here are three examples
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(a) y′′′ + 5y′′ − 14y′ = x− 3.
Solution: The equation can be re-written as p(D)y = x − 3 where p(t) =
t3 + 5t2 − 14t. The roots are t = 0, 2, 7, each with multiplicity one. The right
side can be re-written as e0·x(x− 3) cos(0 · x) and so this is really a resonance
case. Since the multiplicity of the root 0 is one, the form of the solution is
yp = x(Ax + B). Now y′p = 2Ax + B, y′′p = 2A and y′′′ = 0. Substituting yp
for y in the given DE, we get

0 + 5(2A)− 14(2Ax+B) = x− 3.

This gives
−28Ax+ 10A− 14B = x− 3.

Comparing coefficients, we see that −28A = 1 and 10A− 14B = −3. Solving
we get A = − 1

28 and B = 37
196 . Thus

yp = 1
28x+ 37

196

is a particular solution. Clearly the complementary solution is yc = c1+c2e
2x+

c3e
7x where c1, c2, c3 are arbitrary constants. The general solution is therefore

y = c1 + c2e
2x + c3e

7x + 1
28x+ 37

196 ,

where c1, c2, c3 are arbitrary constants.

(b) y(4) − y = 2 cosx.
Solution: The equation can be re-written as p(D)y = x−3 where p(t) = t4−1.
Now p(t) = (t2 − 1)(t2 + 1) and hence the roots of characteristic equation are
t = ±1,±i. This is a resonance case again, for i = α + iβ with α = 0
and β = 1, and hence 2 cosx = 2eαx cos(βx). So the form of the particular
solution is yp = x(A cosx + B sinx). Substituting yp for y in the given DE
and comparing coefficients, one finds that A = 0 andB = − 1

2 . The exact

computations are left to you (please do the calculations). Thus yp = − 1
2x sinx.

Note that yc = c1e
x + c2e

−x + c3 cosx + c4 sinx where the ci’s are arbitrary
constant. Therefore the general solution is

y = c1e
x + c2e

−x + c3 cosx+ c4 sinx− 1

2
x sinx

where the ci’s are arbitrary constants.

(c) Write down the form of a particular solution to

y(8) + 4y(7) + 7y(6) + 6y(5) − 6y(3) − 7y′′ − 4y′ − y

= 3e2x − 5 sinx− 5xe−x + 2x2e−(1/2)x sin(
√
3
2 x).

Solution: We have already seen that the roots of the characteristic polynomial

of the associated homogeneous linear DE are 1,−1,−1,−1,− 1
2 + i

√
3
2 ,−

1
2 +

i
√
3
2 ,−

1
2 − i

√
3
2 ,−

1
2 − i

√
3
2 , where we have listed each root as many times as the

multiplicity with which it occurs. Check (from the recipe given) that yp has
the form

yp = Ae2x + (B cosx+ C sinx) + x3(Dx+ E)e−x

+ x2e−(1/2)x
{

(Fx2 +Gx+H) cos
(√

3
2 x
)

+ (Ix2 + Jx+K) sin
(√

3
2 x
)}
.
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Here, A,B,C,D,E, F,G,H, I, J,K are constants. Working out the constants
is very tedious (though straightforward, if you have time) task, which thank-
fully we have not been asked to do.

Sporadic techniques. If an equation is of the form

(5) x2
d2y

dx2
+ αx

dy

dx
+ βy = 0, x > 0,

with α and β constants, then the substitution t = lnx transforms the equation to:

(6)
d2y

dt2
+ (α− 1)

dy

dt
+ βy = 0.

This is a linear second order homogeneous DE with constant coefficients and we
can solve for y as a function of t. Substituting t = lnx, we get the expression for y
in terms of x. Differential Equations of the form (5) are called Euler’s equations.

More generally, if we have an equation of the form

(7)
d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0,

on an interval I, with q > 0 on I, and if

q′(x) + 2p(x)q(x)

2(q(x))3/2

is a constant on I, then the transformaton

(8) t =

∫ √
q(x)dx

transforms (7) into an equation with constant coefficients.

Problems. Solve (if no initial conditions are given, find the general solution):

1) 2y′′ + 3y′ − 2y = 0

2) 9
d2y

dx2
+ 24

dy

dx
+ 16y = 0

3)
d3y

dx3
+ 6

d2y

dx2
+ 3

dy

dx
− 10y = 0, y(0) = 2, y′(0) = −7 and y′′(0) = 47

4)
d2y

dx2
− 5

dy

dx
− 7y = 0

5) 2x2
d2y

dx2
+ 5x

dy

dx
− 2y = 0

6) 9x2y′′ + 33xy′ + 16y = 0

7) x2
d2y

dx2
− 4x

dy

dx
− 7y = 0

8) x
d2y

dx2
+ (x2 − 1)

dy

dx
+ x3y = 0, x > 0.

9) y(6) − 3y(5) + 40y(3) − 180y′′ + 324y′ − 432y = 0. [Hint: 1 + i
√

5 is a root (with
positive multiplicity) of the characteristic polynomial.]
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10) 4y′′ + 11y′ + 6y = 0, y(0) = 5, y′(0) = −5

Find a particular solution of

11) 3y′′ − 2y′ − 2y = cos(2x)

12) 2y′′ + 7y′ + 6 = e−2x

13) 2x2
d2y

dx2
+ 5x

dy

dx
− 2y = x2 − 3

√
x

14) x2
d2y

dx2
− 2x

dy

dx
+ 2y = sin(lnx) + x2

15) y′′ − 2y′ + 17 = (3x2 + 2)ex sin(2x)

16) x
d2y

dx2
+ (x2 − 1)

dy

dx
+ x3y = exp (− 1

4x
2) cos(

√
3
4 x

2), x > 0.

Write down the form of a particular solution of

17) y(4) − 4y(3) + 38y′′ − 68y + 289 = xex cos(2x)

18) y(6) − 3y(5) + 45y(4) − 24y(3) + 236y′′ + 1300y′ − 4056y = x2ex cos(
√

5x)

The next two questions involve linear differential equations with non-constant coef-
ficients - these are equations you have encountered in some of the problems above.
The recipe for solving these were given in the main part of the text.

19) Show that the change of variables t = lnx transforms the DE in equation (5) of
the text portion of this document to the one in (6).

20) Show that the change of variables t =
∫
q(x)

1/2
dx in (8) (of the text portion

of this document) transforms the DE in equation (7) of the text to a linear DE
with constant coefficients, provided q is positive everywhere on the interval of
interest and the expression (q′(x) + 2p(x)q(x))/(2(q(x))3/2) is a constant.
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