
DEQN COOKBOOK - I

Separable DE’s. These are equations of the form

g(y)
dy

dx
= f(x).

We assume f and g are continuous. If G is a primitive (i.e. anti-derivative) of g,
and F a primitive of f , then upon integrating the above equation with respect to
x, we get

G(y) = F (x) + C

where C is an arbitrary constant. This defines y as an implicit function of x. An
example would be

dy

dx
=

2 sin(2x)

3− 2y

which can be re-written as (3− 2y) dy
dx = 2 sin(2x). A general solution is 3y − y2 =

− cos(2x) +C with C, as always, an arbitrary constant. If an “initial value” of y is
prescribed, say y(x0) = y0, then C can be worked out. In fact C = G(y0)− F (x0).
Note that for the implicit function theorem to apply (so that y is a function of
x in an open neighbourhood of x0), we need ∂Φ

∂y (x0, y0) to be non-zero, where

Φ(x, y) = G(y) − F (x). This is the same as the condition that g(y0) 6= 0. In the
example we have give, this means y0 6= 3

2 .

Linear First Order DE’s. These are of the form

y′ + p(x)y = q(x)

where p and q are continuous functions on an interval. Recall from your high-
school that the trick is to multiply the equation by an integrating factor µ(x) given

by µ(x) = exp
∫
p(x)dx. The equation then is equivalent to dµ(x)y

dx = µ(x)q(x),

whence y = µ(x)−1
∫
µ(x)q(x)dx. Note that if P (x) is a primitive of p(x), then

so is P1(x) = P (x) + D where D is a constant. If µ1(x) = exp (P1(x)), then
µ1(x) = eDµ(x), whence µ1(x)−1

∫
µ1(x)q(x)dx = µ(x)−1e−D

∫
eDµ(x)q(x)dx =

µ(x)−1
∫
µ(x)q(x)dx.

Homogeneous first order DE’s. The term homogeneous is overused! There are
at least two different kinds of DE’s called homogeneous. In the course you will
also learn about homogeneous linear differential equations which have nothing to
do with the homogeneous DE’s we now discuss (which you also saw in your high
school). An expression f(x, y) in two variables is called homogeneous of degree
zero if f(λx, λy) = f(x, y) for every λ 6= 0. Homogenous first order equations are
equations of the form

dy

dx
= f(x, y)

where f is homogeneous of degree 0. Recall (from high school) that such equations
are solved by setting y = vx (with x assumed non-zero in the interval of interest).
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Then, if we set g(v) = f(1, v), and use the identity dy
dx = x dv

dx + v, the equation
reduces to

x
dv

dx
+ v = g(v)

which is separable (check!). As an example, consider, for x > e−3,

x2 dy

dx
= xy + y2, y(1) = − 1

3 .

The main equation (without the additional conditions) can be re-written in the form
dy
dx = xy+y2

x2 which is homogeneous. From the discussion above, setting v = y/x,

this reduces to x dv
dx + v = v + v2, i.e. to

v−2 dv

dx
= x−1.

Check that on solving this separable equation and substituting y = vx, this yields
y = −x

ln x+C where C is an arbitrary constant. Since y(1) = − 1
3 , this means C = 3,

i.e.

y =
−x

lnx+ 3
(x > e−3).

Bernoulli Equations. These are equations of the form

y′ + p(x)y = q(x)yn

with n ∈ R, where p and q are continuous functions on some interval. If n = 0 this
is simply a first order linear DE. If n = 1 this is a separable DE. For n 6= 0, 1, the
substitution v = y1−n gives us a first order linear DE in v, namely (check this):

1
1−nv

′ + p(x)v = q(x).

Setting y = v1/(1−n), we get a solution. If n > 0, there is another hidden solution,
namely y ≡ 0.

Exact DE’s. Consider first order DE’s of the form

(∗) M(x, y) +N(x, y)
dy

dx
= 0

with M and N being C 1 functions on a region U in R2. The DE (∗) is said to be
exact if there exists a C 2 function P on U such that

(∗∗) ∂P

∂x
= M and

∂P

∂y
= N.

Then (∗) amounts to saying dP (x,y(x))
dx = 0 where y(x) is a solution of (∗). Equiva-

lently, y is given by the implicit equation

P (x, y) = C.

Note that if P a function satisfying (∗∗) then it is C 2 and hence ∂2P
∂y∂x = ∂2P

∂x∂y . This
amounts to saying

(†) ∂M

∂y
=
∂N

∂x
.
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Conversely, assuming U = R2 (or more generally U is “simply connected”), if (†)
is satisfied, then by Green’s theorem we have, for any closed simple curve γ in R2

(or in U , with U simply connected) enclosing a region R, we have:∮
γ

(Mdx+Ndy) =

∫∫
R

(∂N
∂x
− ∂M

∂y

)
dxdy = 0.

In other words
∫

(Mdx+Ndy) is path independent. Fix a “base point” (x0, y0) in

R2. For a variable point (x, y) in R2, the symbol
∫ (x,y)

(x0,y0)
(Mdx+Ndy) makes sense

by the just established path independence . Define

P (x, y) =

∫ (x,y)

(x0,y0)

(Mdx+Ndy).

It is easy to see that P satisfies (∗∗). Thus on R2 (or on a simply connected region
U), the equation (∗) is exact if and only if (†) is satisfied.

We point out that if we have another function satisfying (∗∗), say Q such that
Qx = M and Qy = N , then the partial derivatives of P − Q are zero, and hence
P −Q is a constant. Hence the family of solutions Q(x, y) = D, where we have one
solution for each arbitrary constant D, is no different from the family of solutions
given by P (x, y) = C, with C an arbitrary constant.

As an example, consider the DE

3x2y + y cos(xy) + (x3 + x cos(xy) + y2)
dy

dx
= 0.

Setting M(x, y) = 3x2y + y cos(xy) and N(x, y) = x3 + x cos(xy) + y2 we see that

∂M

∂y
=
∂N

∂x
= 3x2 + cos(xy)− xy sin(xy).

Thus the given DE is exact. We need to find P such that Px = M and Py = N .

P (x, y) =

∫
M(x, y)dx = x3y + sin(xy) + g(y),

where g is an arbitrary differentiable function of y. Differentiating the above ex-
pression with respect to y we get

N(x, y) = Py(x, y) = x3 + x sin(xy) + g′(y).

Comparing this with the given expression for N , we get g′(y) = y2, whence we can
pick g(y) to be 1

3y
3. With this choice of g, we have P (x, y) = x3y + sin(xy) + 1

3y
3,

whence y is defined by the implicit equation

x3y + sin(xy) + 1
3y

3 = C

where C is a constant. Some additional observations are worth making.

• The constant C can be worked out based on additional data, say y(x0) = y0

where x0 and y0 are known.
• For x0 and y0 as above, we need to make sure that Py(x0, y0) 6= 0, i.e.
N(x0, y0) 6= 0, for the implicit function theorem to apply.
• The two comments above apply to general exact DE’s, not just to the

example worked out.
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Second order equations with the dependent variable missing. The most
general form of a second order DE we are interested in is of of the form y′′ =
f(x, y, y′). Consider a DE of the form

y′′ = f(x, y′).

Note that the dependent variable y is missing. In this case, setting v = y′, the above
equation becomes v′ = f(x, v), which is a first order equation in v. If we solve this,
we can find y by integrating v with respect to x. The process will introduce two
arbitrary constants, and one can solve for the constants if y(x0) and y′(x0) are
given for a fixed value x0 of x.

As an example, consider the equation

y′′ + x(y′)3 = 0 (x > 0, y(1) = 0, y′(1) = 1).

This translates to v′ + xv3 = 0, which is separable. We have v−3v′ = −x, i.e.
v−2 = x2 + D, where D is a constant. Since v(1) = y′(1) = 1, we get D = 0.
Thus v−2 = x2. Since v(1) > 0, we must have (by continuity of v), v = x−1 for
x > 0. This gives y = ln(x) + E. (Note: We have been given that x > 0.) Using
the fact that y(1) = 0, we get y = lnx. One observation. If we look at the DE
v′+xv3 = 0 without worrying about the initial values, there is an obvious solution,
namely v ≡ 0. In other words, y is a constant. But in our case, we discard that
solution because we have v(1) = y′(1) = 1, which is not possible if v ≡ 0. If the
initial conditions are not given, then in the general solution, we have to consider
this hidden solution too.

Second order equation with the independent variable missing. These are
equations of the type

y′′ = f(y, y′).

Here we once again set v = y′, but write y′′ = d2y
dx2 = dv

dx = dv
dy

dy
dx = v dv

dy . Thus the

DE is transformed to:

v
dv

dy
= f(y, v).

One solves for v as a function of y, (introducing an arbitrary constant), and then

one solves the equation dy
dx = v(y), which is separable. The last step introduces a

second arbitrary constant.
An example is the equation (used to compute “escape velocity”):

dy

dt
= − gR2

(R+ y)2

where y is the height above the ground, R radius of the earth, and g the acceleration
due to gravity at sea level. The independent variable t marks time. Setting v = dy

dt
(v is the velocity in the upward direction), we get, from the above discussion

v
dv

dy
= − gR2

(R+ y)2
.

This in turn yields

v2

2
=

gR2

R+ y
+ c.
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Assume y = 0 when t = 0. If v0 is the initial velocity then c = 1
2v

2
0 − gR. This

gives, for a rising body (so that v and y are both pointed upwards)

v =

√
v2

0 − 2gR+
2gR2

R+ y
.

If ζ is the maximum height reached, then v = 0 when y = ζ, whence we have the
rlation v2

0 − 2gR+ 2gR2/(R+ ζ) = 0. This gives

v0 =

√
2gR

ζ

R+ ζ
.

This is to be interpreted as the formula for the initial velocity if the maximum
altitude to be reached is ζ. If we let ζ approach infinity, we get the escape velocity
ve, the initial velocity needed for a body to escape earth’s gravitational pull. Clearly
(by letting ζ →∞ in the expression for v0 as a function of ζ) we have

ve =
√

2gR.

Problems. Solve

1)
dy

dx
=

1 + y2

x
, x > 0

2)
dy

dx
=
x2 + xy + y2

x2

3)
dy

dx
=

3x2 − 2x− 1

2(y − 1)
, y(3) = 1−

√
13

4) (1 + x)
dy

dx
+ y = 1 + x, x > 0

5)
dy

dx
=

x− 2x3

16 + 2y3

6) Let y = ϕ(x) be a solution of the problem in 5) such that ϕ(x0) = y0, and
such that ϕ is defined as a C 1 function in a neighbourhood of x0. What are the
forbidden values of y0?

7)
dy

dx
=
x− e−x

y + ey

8) x2y′ + 2xy − y3 = 0, x > 0

9)
dy

dx
=
y2 − 4x2

2xy

10) t ln t
du

dt
+ u = tet, t > 1

11)
dy

dx
+ y = e−2x

12) sinx
dy

dx
+ (cosx)y = ex

13) (ex sin y − 2y sinx)dx+ (ex cos y + 2 cosx)dy = 0
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14) (1 + x)
dy

dx
+ y = 1 + x, x > 0

15) xy′ = y + x2 sinx, y(π) = 0

16)
dy

dx
+

2

x
y =

y3

x2

17) y cosx+ 2xey + (sinx+ x2ey − 1)y′ = 0

18) x2y′′ + 2xy′ − 1 = 0, x > 0

19) xy′ + y =
√
x, x > 0

20) xy′′ + y′ = 1, x > 0

21) yy′′ − (y′)3 = 0

22) 2y2y′′ + 2y(y′)2 = 1

In problems 23) and 24) below:

(a) Find the solution of the initial value problem in explicit form.
(b) Determine the interval in which the solution is defined.

23) y′ = (1− 2x)y2, y(0) = − 1
6

24) y2
√

1− x2y′ = arcsinx, y(0) = 1

25) Check if the DE xyex
2y + x2ex

2yy′ = 0 is exact and solve it if it is.

26) Check if the DE(
3x2y sin(x+ y) + x3y cos(x+ y) + y sec2(xy)

)
dx

+
(
x3 sin(x+ y) + x3y cos(x+ y) + x sec2(xy)

)
dy = 0

is exact and solve it if it is.

In problems 27) and 28), find the value of α which makes the given DE exact.

27) αye2xydx+ (xe2xy + y)dy = 0

28) (x+ y)y2dx+ (x2y + αxy2)dy = 0
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