
HW 4

Due date: February 8, 2021

Variation of Parameters. Use variation of parameters to find a particular so-
lution of the following equations (after converting them into first order vector DEs).

1) x3
d2y

dx2
− 2xy = 2, x > 0

2)
d2y

dt2
− 2

dy

dt
+ y =

et

1 + t2

3) (1−x2)
d2y

dx2
− 1

x

dy

dx
= x
√

1− x2, 0 < x < 1. (Note that y ≡ 1 is a solution of the

associated homogeneous equation. See the section under the heading ”Second
order equations with the dependent variable missing” in Cookbook-1 to find a
basis for the solutions of the associated homogeneous equation.)

Some inequalitites. Let I be an interval, t0 a point in I, a and b continuous
real-valued functions on I. Recall that the solution of the linear first order IVP

u̇(t) = a(t)u(t) + b(t), u(t0) = u0

involved an integrating factor. Specifically, if we write p(t) =
∫ t

t0
a(s)ds, then

d

dt

(
e−p(t)u(t)

)
= e−p(t)b(t),

which implies, upon applying the operator
∫ t

t0
(−)(s)ds to both sides

e−p(t)u(t)− u0 =

∫ t

t0

e−p(s)b(s)ds.

From here one gets the solution

u(t) = u0e
p(t) +

∫ t

t0

ep(t)−p(s)b(s)ds.

Here is a twist to this solution.

4) Suppose I = [t0, t1] and suppose a and b are continuous real-valued functions

on I. Let p(t) =
∫ t

t0
a(s)ds. Suppose u : I → R is C 1 and satisfies

u̇(t) ≤ a(t)u(t) + b(t)
u(t0) = u0

}
(t ∈ I)

Show that

u(t) ≤ u0ep(t) +

∫ t

t0

ep(t)−p(s)b(s)ds.
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5) Suppose I = [t0, t1] and ϕ, ψ, and α are continuous real-valued functions on I,
with α ≥ 0. Suppose

ϕ(t) ≤ ψ(t) +

∫ t

t0

α(s)ϕ(s)ds (t ∈ I).

Let q(t) =
∫ t

t0
α(s)ds. Show that

ϕ(t) ≤ ψ(t) +

∫ t

t0

eq(t)−q(s)α(s)ψ(s)ds.

[Hint: Use Problem (4).] (Note that in particular if ψ is a constant, say ψ(t) ≡ c,
then the inequality above says ϕ(t) ≤ ceq(t).)

6) Suppose Ω is a subset of R × R and f : Ω → R a continuous function which
is Lipschitz continuous in the second variable with Lipschitz constant L.1 Let
t0 ∈ R and let I be an interval of the form [t0, b], or [t0, b), or [t0,∞). Suppose
u and v are C1 functions on I such that (t, u(t)) and (t, v(t)) are in Ω for all
t ∈ I. Suppose further that u and v satisfy

u̇(t) ≤ f(t, u(t)),

v̇(t) = f(t, v(t)),

u(t0) ≤ v(t0).

Show that u(t) ≤ v(t) for t ∈ I. [Hint: Assume the contrary. Show that
u̇ − v̇ ≤ u − v on a suitable sub-interval of of the form J = [t1,∞) ∩ I with
u(t1) = v(t1) and u ≥ v on J . Use Problem (4) to derive a contradiction.]

7) In the previous problem show that the conclusion holds with a slightly different
set of hypotheses. Let f be continuous on Ω. We no longer assume that f is
Lipschitz in the second variable on all of Ω, but only on a subset V of Ω which
has the property that

(t, x) ∈ V =⇒ ({t} × [x,∞)) ∩ Ω ⊂ V.

Assume that (t, v(t)) ∈ V for all t ∈ I (we do not make this extra assumption on
u; however we continue to assume (t, u(t)) ∈ Ω for t ∈ I). With these changes,
and with the rest of the hypotheses the same, show that the conclusion of the
previous problem holds. [Hint: Examine the proof you gave for the previous
problem carefully.]

Definition 1. We say that ϕ is an ε-approximate solution of the DE ẋ = v(t,x)
on an interval I if (t,ϕ(t)) is in the domain of v for all t ∈ I and∥∥∥ϕ̇(t)− v(t,ϕ(t))

∥∥∥ ≤ ε (t ∈ I).

We will be using the following fundamental estimate quite heavily in the proof
that solutions of DE’s vary smoothly with the initial conditions.

1i.e for fixed t, the inequality |f(t, x)−f(t, y)| ≤ L|x−y| holds for all (t, x), (t, y) ∈ ({t}×R)∩Ω.
We have also used the term “Lipschitz in phase space” for this.
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8) (The Fundamental Estimate) Let Ω ⊂ R × Rn and v : Ω → Rn a continuous
function which is Lipschitz in the second variable with Lipschitz constant L.
Suppose ϕ and ψ are C 1 functions on an interval I, with ϕ an ε1-approximation
of ẋ = v(t,x) on I and ψ an ε2-approximation of ẋ = v(t,x) on I. Suppose
further that at a specified point t0 in I we have ‖ϕ(t0)−ψ(t0)‖ ≤ δ. Then∥∥∥ϕ(t)−ψ(t)

∥∥∥ ≤ δeL|t−t0| + ε1 + ε2
L

(
eL|t−t0| − 1

)
(t ∈ I).

[Hint: Let u(t) = ‖ϕ(t)−ψ(t)‖2. Let ε = ε1 + ε2. Show that u̇ ≤ 2Lu+ 2ε
√
u.

Show that f(x) = 2Lx + 2ε
√
x is Lipschitz on [δ2,∞) by using the fact that

df

dx
= 2L+

ε√
x

is bounded in [δ2,∞). Now use Problem (7).]
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