Due date: February 8, 2021
Variation of Parameters. Use variation of parameters to find a particular solution of the following equations (after converting them into first order vector DEs).

1) $x^{3} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 x y=2, x>0$
2) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} t}+y=\frac{e^{t}}{1+t^{2}}$
3) $\left(1-x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-\frac{1}{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}=x \sqrt{1-x^{2}}, 0<x<1$. (Note that $y \equiv 1$ is a solution of the associated homogeneous equation. See the section under the heading "Second order equations with the dependent variable missing" in Cookbook-1 to find a basis for the solutions of the associated homogeneous equation.)

Some inequalitites. Let I be an interval, t_{0} a point in I, a and b continuous real-valued functions on I. Recall that the solution of the linear first order IVP

$$
\dot{u}(t)=a(t) u(t)+b(t), \quad u\left(t_{0}\right)=u_{0}
$$

involved an integrating factor. Specifically, if we write $p(t)=\int_{t_{0}}^{t} a(s) d s$, then

$$
\frac{d}{d t}\left(e^{-p(t)} u(t)\right)=e^{-p(t)} b(t)
$$

which implies, upon applying the operator $\int_{t_{0}}^{t}(-)(s) d s$ to both sides

$$
e^{-p(t)} u(t)-u_{0}=\int_{t_{0}}^{t} e^{-p(s)} b(s) d s
$$

From here one gets the solution

$$
u(t)=u_{0} e^{p(t)}+\int_{t_{0}}^{t} e^{p(t)-p(s)} b(s) d s
$$

Here is a twist to this solution.
4) Suppose $I=\left[t_{0}, t_{1}\right]$ and suppose a and b are continuous real-valued functions on I. Let $p(t)=\int_{t_{0}}^{t} a(s) d s$. Suppose $u: I \rightarrow \mathbf{R}$ is \mathscr{C}^{1} and satisfies

$$
\left.\begin{array}{rl}
\dot{u}(t) & \leq a(t) u(t)+b(t) \\
u\left(t_{0}\right) & =u_{0}
\end{array}\right\} \quad(t \in I)
$$

Show that

$$
u(t) \leq u_{0} e^{p(t)}+\int_{t_{0}}^{t} e^{p(t)-p(s)} b(s) d s
$$

5) Suppose $I=\left[t_{0}, t_{1}\right]$ and φ, ψ, and α are continuous real-valued functions on I, with $\alpha \geq 0$. Suppose

$$
\varphi(t) \leq \psi(t)+\int_{t_{0}}^{t} \alpha(s) \varphi(s) d s \quad(t \in I)
$$

Let $q(t)=\int_{t_{0}}^{t} \alpha(s) d s$. Show that

$$
\varphi(t) \leq \psi(t)+\int_{t_{0}}^{t} e^{q(t)-q(s)} \alpha(s) \psi(s) d s
$$

[Hint: Use Problem (4).] (Note that in particular if ψ is a constant, say $\psi(t) \equiv c$, then the inequality above says $\varphi(t) \leq c e^{q(t)}$.)
6) Suppose Ω is a subset of $\mathbf{R} \times \mathbf{R}$ and $f: \Omega \rightarrow R$ a continuous function which is Lipschitz continuous in the second variable with Lipschitz constant L. ${ }^{1}$ Let $t_{0} \in \mathbf{R}$ and let I be an interval of the form $\left[t_{0}, b\right]$, or $\left[t_{0}, b\right)$, or $\left[t_{0}, \infty\right)$. Suppose u and v are C^{1} functions on I such that $(t, u(t))$ and $(t, v(t))$ are in Ω for all $t \in I$. Suppose further that u and v satisfy

$$
\begin{aligned}
\dot{u}(t) & \leq f(t, u(t)) \\
\dot{v}(t) & =f(t, v(t)) \\
u\left(t_{0}\right) & \leq v\left(t_{0}\right)
\end{aligned}
$$

Show that $u(t) \leq v(t)$ for $t \in I$. [Hint: Assume the contrary. Show that $\dot{u}-\dot{v} \leq u-v$ on a suitable sub-interval of of the form $J=\left[t_{1}, \infty\right) \cap I$ with $u\left(t_{1}\right)=v\left(t_{1}\right)$ and $u \geq v$ on J. Use Problem (4) to derive a contradiction.]
7) In the previous problem show that the conclusion holds with a slightly different set of hypotheses. Let f be continuous on Ω. We no longer assume that f is Lipschitz in the second variable on all of Ω, but only on a subset V of Ω which has the property that

$$
(t, x) \in V \Longrightarrow(\{t\} \times[x, \infty)) \cap \Omega \subset V
$$

Assume that $(t, v(t)) \in V$ for all $t \in I$ (we do not make this extra assumption on u; however we continue to assume $(t, u(t)) \in \Omega$ for $t \in I)$. With these changes, and with the rest of the hypotheses the same, show that the conclusion of the previous problem holds. [Hint: Examine the proof you gave for the previous problem carefully.]

Definition 1. We say that $\boldsymbol{\varphi}$ is an ϵ-approximate solution of the $D E \dot{\boldsymbol{x}}=\boldsymbol{v}(t, \boldsymbol{x})$ on an interval I if $(t, \boldsymbol{\varphi}(t))$ is in the domain of \boldsymbol{v} for all $t \in I$ and

$$
\|\dot{\boldsymbol{\varphi}}(t)-\boldsymbol{v}(t, \boldsymbol{\varphi}(t))\| \leq \epsilon \quad(t \in I)
$$

We will be using the following fundamental estimate quite heavily in the proof that solutions of DE's vary smoothly with the initial conditions.

[^0]8) (The Fundamental Estimate) Let $\Omega \subset \mathbf{R} \times \mathbf{R}^{n}$ and $\boldsymbol{v}: \Omega \rightarrow \mathbf{R}^{n}$ a continuous function which is Lipschitz in the second variable with Lipschitz constant L. Suppose φ and ψ are \mathscr{C}^{1} functions on an interval I, with φ an ϵ_{1}-approximation of $\dot{\boldsymbol{x}}=\boldsymbol{v}(t, \boldsymbol{x})$ on I and $\boldsymbol{\psi}$ an ϵ_{2}-approximation of $\dot{\boldsymbol{x}}=\boldsymbol{v}(t, \boldsymbol{x})$ on I. Suppose further that at a specified point t_{0} in I we have $\left\|\boldsymbol{\varphi}\left(t_{0}\right)-\boldsymbol{\psi}\left(t_{0}\right)\right\| \leq \delta$. Then
$$
\|\boldsymbol{\varphi}(t)-\boldsymbol{\psi}(t)\| \leq \delta e^{L\left|t-t_{0}\right|}+\frac{\epsilon_{1}+\epsilon_{2}}{L}\left(e^{L\left|t-t_{0}\right|}-1\right) \quad(t \in I)
$$
[Hint: Let $u(t)=\|\boldsymbol{\varphi}(t)-\boldsymbol{\psi}(t)\|^{2}$. Let $\epsilon=\epsilon_{1}+\epsilon_{2}$. Show that $\dot{u} \leq 2 L u+2 \epsilon \sqrt{u}$. Show that $f(x)=2 L x+2 \epsilon \sqrt{x}$ is Lipschitz on $\left[\delta^{2}, \infty\right)$ by using the fact that $\frac{d f}{d x}=2 L+\frac{\epsilon}{\sqrt{x}}$ is bounded in $\left[\delta^{2}, \infty\right)$. Now use Problem (7).]

[^0]: ${ }^{1}$ i.e for fixed t, the inequality $|f(t, x)-f(t, y)| \leq L|x-y|$ holds for all $(t, x),(t, y) \in(\{t\} \times \mathbf{R}) \cap \Omega$. We have also used the term "Lipschitz in phase space" for this.

