HW 3

Cookbook problems. Solve:

1) Cookbook-I: 13 and 22.
2) Cookbook-II: 3 and 9.

The operator norm on matrices. If V and W are vector spaces over a field F, we write $\operatorname{Hom}_{F}(V, W)$ for the vector space of linear transformations from V to W. Recall from $\S \S 2.1$ of Lecture 5 in ANA2 that the vector space of linear operators from \mathbf{R}^{n} to \mathbf{R}^{n} has a norm. The norm was denoted there by $\left\|\|_{L}\right.$. However, in this course, L will usually be used for Lipschitz constants and hence we will use the symbol $\left\|\|_{\circ}\right.$ for the operator norm. Recall also that we have $\| A B\left\|_{\circ} \leq\right\| A\left\|_{\circ}\right\| B \|_{\circ}$ for $A \in \operatorname{Hom}_{\mathbf{R}}\left(\mathbf{R}^{k}, \mathbf{R}^{m}\right.$) and $B \in \operatorname{Hom}_{\mathbf{R}}\left(\mathbf{R}^{n}, \mathbf{R}^{k}\right.$) (see $\mathbf{7}$ of $\S 1$ of Lecture 7 in ANA2).

In this HW, if we say I is an interval, then we allow I to be open, closed, or half-open, but insist that it have a non-empty interior. This means single points are not intervals for us.

We often write $M_{m, n}(F)$ for the space of $m \times n$ matrices with entries in a field F. Clearly $M_{m, n}(F)$ can be identified with $\operatorname{Hom}_{F}\left(F^{n}, F^{m}\right)$, and we will often do so implictly. Thus it makes sense to talk about the operator norm on $M_{m, n}(\mathbf{R})$, and we will denote this also by $\left\|\|_{0}\right.$. Since $M_{m, n}(\mathbf{R})$ (which we identify with $\operatorname{Hom}_{\mathbf{R}}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$) is finite dimensional, all norms on it are equivalent. In particular, a map from an interval I to $\left(M_{m, n}(\mathbf{R}),\| \|_{\circ}\right)$, say $A: I \rightarrow M_{m, n}(\mathbf{R})$, is continuous if and only if each of the entries of the matrix of functions A is continuous. ${ }^{1}$ Let t_{\circ} be a point in I. We say $A: \rightarrow M_{m, n}(\mathbf{R})$ is differentiable at t_{\circ} if:

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{1}{h}\left(A\left(t_{\circ}+h\right)-A\left(t_{\circ}\right)\right) \tag{*}
\end{equation*}
$$

exists. The above limit is the appropriate one-sided limit in the event our interval is closed or half open, and t_{\circ} is a boundary point of I. These limits are of course taken with respect to $\left\|\|_{0}\right.$. However, as we just argued, any norm can be used, since all norms on $M_{m, n}(\mathbf{R})$ are equivalent. If A is differentiable at t_{\circ} then the limit in $(*)$ is called the derivative of A at t_{\circ} and denoted by any of the familiar symbols $\left.\frac{\mathrm{d} A}{\mathrm{~d} t}\right|_{t=t_{0}}, \dot{A}\left(t_{\circ}\right), \frac{\mathrm{d} A}{\mathrm{~d} t}\left(t_{\circ}\right), A^{\prime}\left(t_{\circ}\right)$ etc. A is said to be differentiable on I if it is differentiable at every point of I. In such a case, the function $t \mapsto \dot{A}(t)$ is called the derivative of A on I, and is denoted by the symbols $\dot{A}, \frac{\mathrm{~d} A}{\mathrm{~d} t}, A^{\prime}$, and sometimes as $\frac{\mathrm{d} A(t)}{\mathrm{d} t}$ or $\frac{\mathrm{d}}{\mathrm{d} t} A(t)$.

[^0]3) Let I be an interval in \mathbf{R} and suppose
$$
\dot{\boldsymbol{x}}(t)=A(t) \boldsymbol{x}(t) \quad(t \in I)
$$
is a linear first order differential equation with A an $n \times n$ matrix of continuous functions on an I. Suppose $\boldsymbol{y}_{1}(t), \ldots, \boldsymbol{y}_{n}(t)$ are n solutions of this differential equation on I. Let
$$
W=W\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}\right): I \longrightarrow \mathbf{R}
$$
be the function given by
$$
W(t)=\operatorname{det}\left[\boldsymbol{y}(t), \ldots, \boldsymbol{y}_{n}(t)\right] \quad(t \in I)
$$
where $\left[\boldsymbol{y}(t), \ldots, \boldsymbol{y}_{n}(t)\right]$ is regarded an $n \times n$ matrix whose $i^{\text {th }}$ column is $\boldsymbol{y}_{i}(t)$, $i=1, \ldots, n$. Show that either W is identically zero on I or it is nowhere vanishing on I.
4) Let I be an interval in \mathbf{R}. Suppose $A: I \rightarrow M_{m, k}(\mathbf{R})$ and $B: I \rightarrow M_{k, n}(\mathbf{R})$ are differentiable on I. Show that $t \mapsto A(t) B(t)$ gives us a differentiable map $A B: I \rightarrow M_{m, n}(\mathbf{R})$ and that
$$
\frac{\mathrm{d}}{\mathrm{~d} t}(A(t) B(t))=\dot{A}(t) B(t)+A(t) \dot{B}(t) \quad(t \in I)
$$

[^0]: ${ }^{1}$ A function $A: S \rightarrow M_{m, n}(\mathbf{R})$, where S is some non-empty set, is the same as an $m \times n$ matrix of functions $A=\left(a_{i j}\right)$ with $a_{i j}: S \rightarrow \mathbf{R}, 1 \leq i \leq m, 1 \leq j \leq n$.

