HW 3

Cookbook problems. Solve:

- 1) Cookbook-I: 13 and 22.
- 2) Cookbook-II: 3 and 9.

The operator norm on matrices. If V and W are vector spaces over a field F, we write $\operatorname{Hom}_F(V, W)$ for the vector space of linear transformations from V to W. Recall from §§2.1 of Lecture 5 in ANA2 that the vector space of linear operators from \mathbb{R}^n to \mathbb{R}^n has a norm. The norm was denoted there by $\| \|_L$. However, in this course, L will usually be used for Lipschitz constants and hence we will use the symbol $\| \|_{\circ}$ for the operator norm. Recall also that we have $\|AB\|_{\circ} \leq \|A\|_{\circ}\|B\|_{\circ}$ for $A \in \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^k, \mathbb{R}^m)$ and $B \in \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^n, \mathbb{R}^k)$ (see 7 of §1 of Lecture 7 in ANA2).

In this HW, if we say I is an interval, then we allow I to be open, closed, or half-open, but insist that it have a non-empty interior. This means single points are not intervals for us.

We often write $M_{m,n}(F)$ for the space of $m \times n$ matrices with entries in a field F. Clearly $M_{m,n}(F)$ can be identified with $\operatorname{Hom}_F(F^n, F^m)$, and we will often do so implicitly. Thus it makes sense to talk about the operator norm on $M_{m,n}(\mathbf{R})$, and we will denote this also by $\|\|_{\circ}$. Since $M_{m,n}(\mathbf{R})$ (which we identify with $\operatorname{Hom}_{\mathbf{R}}(\mathbf{R}^n, \mathbf{R}^m)$) is finite dimensional, all norms on it are equivalent. In particular, a map from an interval I to $(M_{m,n}(\mathbf{R}), \|\|_{\circ})$, say $A: I \to M_{m,n}(\mathbf{R})$, is continuous if and only if each of the entries of the matrix of functions A is continuous.¹ Let t_{\circ} be a point in I. We say $A: \to M_{m,n}(\mathbf{R})$ is differentiable at t_{\circ} if:

(*)
$$\lim_{h \to 0} \frac{1}{h} \Big(A(t_{\circ} + h) - A(t_{\circ}) \Big)$$

exists. The above limit is the appropriate one-sided limit in the event our interval is closed or half open, and t_0 is a boundary point of I. These limits are of course taken with respect to $\| \|_0$. However, as we just argued, any norm can be used, since all norms on $M_{m,n}(\mathbf{R})$ are equivalent. If A is differentiable at t_0 then the limit in (*) is called the *derivative* of A at t_0 and denoted by any of the familiar symbols $\frac{dA}{dt}|_{t=t_0}$, $\dot{A}(t_0)$, $\frac{dA}{dt}(t_0)$, $A'(t_0)$ etc. A is said to be *differentiable on* I if it is differentiable at every point of I. In such a case, the function $t \mapsto \dot{A}(t)$ is called the derivative of A on I, and is denoted by the symbols \dot{A} , $\frac{dA}{dt}$, A', and sometimes as $\frac{dA(t)}{dt}$ or $\frac{d}{dt}A(t)$.

¹A function $A: S \to M_{m,n}(\mathbf{R})$, where S is some non-empty set, is the same as an $m \times n$ matrix of functions $A = (a_{ij})$ with $a_{ij}: S \to \mathbf{R}, 1 \le i \le m, 1 \le j \le n$.

3) Let I be an interval in **R** and suppose

$$\dot{\boldsymbol{x}}(t) = A(t)\boldsymbol{x}(t) \qquad (t \in I)$$

is a linear first order differential equation with A an $n \times n$ matrix of continuous functions on an I. Suppose $y_1(t), \ldots, y_n(t)$ are n solutions of this differential equation on I. Let

$$W = W(\boldsymbol{y}_1, \ldots, \boldsymbol{y}_n) \colon I \longrightarrow \mathbf{R}$$

be the function given by

$$W(t) = \det \left[\boldsymbol{y}(t), \dots, \boldsymbol{y}_n(t) \right] \qquad (t \in I),$$

where $[\boldsymbol{y}(t), \ldots, \boldsymbol{y}_n(t)]$ is regarded an $n \times n$ matrix whose i^{th} column is $\boldsymbol{y}_i(t)$, $i = 1, \ldots, n$. Show that either W is identically zero on I or it is nowhere vanishing on I.

4) Let I be an interval in **R**. Suppose $A: I \to M_{m,k}(\mathbf{R})$ and $B: I \to M_{k,n}(\mathbf{R})$ are differentiable on I. Show that $t \mapsto A(t)B(t)$ gives us a differentiable map $AB: I \to M_{m,n}(\mathbf{R})$ and that

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(A(t)B(t) \right) = \dot{A}(t)B(t) + A(t)\dot{B}(t) \qquad (t \in I).$$