## HW 2

You may use the following theorem (the proof of which will be done some time in the course):

Theorem 1. Suppose $p_{i}(t), i=1, \ldots, n$ and $g(t)$ are continuous real-valued functions on an interval ( $a, b$ ) that contains the point $t_{0}$. Then for any choice of real numbers $\alpha_{0}, \ldots, \alpha_{n-1}$, there exists a unique solution $y(t)$ on the interval $(a, b)$ to the ordinary linear differential equation

$$
y^{(n)}(t)+p_{1}(t) y^{(n-1)}(t)+\cdots+p_{n}(t) y(t)=g(t)
$$

for all $t \in(a, b)$ with $y^{(i)}\left(t_{0}\right)=\alpha_{i}$, for $i=0, \ldots, n-1$.

Cookbook problems. Solve:

1) Problems 1 and 12 from Cookbook-I
2) Problems 2 and 14 from Cookbook-II.
3) For what values of $r$ is $y=t^{r}$ a solution of $t^{2} y^{\prime \prime}+4 t y^{\prime}-10 y=0$ ?
4) Show that the space of solutions to the differential equation

$$
y^{(n)}(x)+p_{1}(x) y^{(n-1)}(x)+\cdots+p_{n}(x) y(x)=0
$$

in the interval $(a, b)$, where $p_{i}$ are continuous on $(a, b)$, is an $\mathbf{R}$-vector space of dimension $n$.

Vector valued linear differential equations. We identify $\mathbf{R}^{n}$ with column vectors $\boldsymbol{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$. Let

$$
A(t)=\left[\begin{array}{ccc}
a_{11}(t) & \ldots & a_{1 n}(t) \\
a_{21}(t) & \ldots & a_{2 n}(t) \\
\vdots & & \vdots \\
a_{n 1}(t) & \ldots & a_{n n}(t)
\end{array}\right]
$$

be an $n \times n$ real matrix of continuous real-valued functions $a_{i j}(t), 1 \leq i, j \leq n$ on an interval $(a, b)$. Regard a column of continuous functions $\boldsymbol{x}(t)=\left[\begin{array}{c}x_{1}(t) \\ \vdots \\ x_{n}(t)\end{array}\right]$ on $(a, b)$ as a continuous map $\boldsymbol{x}:(a, b) \rightarrow \mathbf{R}^{n}$ in the usual way. We say $\boldsymbol{x}$ is $k$-times differentiable on $(a, b)$ if each $x_{i}(t)$ is $k$-times differentiable on $(a, b)$ and in this case $\frac{d^{k} \boldsymbol{x}(t)}{d t^{k}}=\boldsymbol{x}^{(k)}(t)$ is defined to be the vector whose entries the $k$-fold derivatives
of $x_{i}(t), i=1, \ldots, n$. The first derivative of $\boldsymbol{x}$, if it exists, is often denoted $\dot{\boldsymbol{x}}$, or sometimes $\dot{\boldsymbol{x}}(t)$. Consider the equation

$$
\begin{equation*}
\dot{\boldsymbol{x}}(t)=A(t) \boldsymbol{x}(t) \tag{*}
\end{equation*}
$$

Equation (*) is called a a vector valued first order linear differential equation, or an $\mathbf{R}^{n}$-valued first order linear differential equation.
Later in the course we will prove the following theorem (you may assume it for now).

Theorem 2. Let $t_{0}$ be a point in $(a, b)$. Then for each $\boldsymbol{\alpha} \in \mathbf{R}^{n}$, there exists $a$ unique solution $\boldsymbol{x}(t)$ in $(a, b)$ to $(*)$ such that $\boldsymbol{x}\left(t_{0}\right)=\boldsymbol{\alpha}$.
5) Show that the solutions to $(*)$ form an $n$-dimensional real vector space.

The constant $A$ case. In the above situation suppose $(a, b)=\mathbf{R}$ and $A$ is a constant matrix of functions. For each $s \in \mathbf{R}$, define a map

$$
g(s): \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}
$$

in the following way:

$$
g(s)(\boldsymbol{\alpha})=\boldsymbol{x}(s), \quad\left(\alpha \in \mathbf{R}^{n}\right)
$$

where $\boldsymbol{x}: \mathbf{R} \rightarrow \mathbf{R}^{n}$ is the unique solution to $(*)$ with $\boldsymbol{x}(0)=\boldsymbol{\alpha}$. Show:
6) The map $g(s+t)=g(s) g(t)$ for all $s$ and $t$ in $\mathbf{R}$, and $g(0)$ is the identity map.
7) Each $g(s)$ is an invertible linear transformation. (This, combined with the previous problem, shows that $g$ is a group homomorphism from $\mathbf{R}$ to the group of invertible linear transformations of $\mathbf{R}^{n}$.)
8) Identifying linear endomorphisms of $\mathbf{R}^{n}$ with $n \times n$ matrices, show that

$$
\lim _{t \rightarrow 0} \frac{g(t)-g(0)}{t}=A
$$

9) Show that every $n$-th order linear differential equation of the form

$$
\begin{equation*}
y^{(n)}(t)+p_{1}(t) y^{(n-1)}(t)+\cdots+p_{n}(t) y(t)=0 \tag{**}
\end{equation*}
$$

where $p_{i}$ are continuous functions on an interval $(a, b)$, is equivalent to a first order linear $\mathbf{R}^{n}$-valued linear differential equation of the form $(*)$ on $(a, b)$ such that the if $\boldsymbol{x}(t)$ is a solution to $(*)$ on $(a, b)$, then $x_{1}(t)$ is a solution to $(* *)$, where $x_{1}$ is the first co-ordinate of $\boldsymbol{x}$. Conclude that Theorem 1 is a special case of Theorem 2 .

