HW 2

You may use the following theorem (the proof of which will be done some time in the course):

Theorem 1. Suppose $p_i(t)$, i = 1, ..., n and g(t) are continuous real-valued functions on an interval (a, b) that contains the point t_0 . Then for any choice of real numbers $\alpha_0, ..., \alpha_{n-1}$, there exists a unique solution y(t) on the interval (a, b) to the ordinary linear differential equation

$$y^{(n)}(t) + p_1(t)y^{(n-1)}(t) + \dots + p_n(t)y(t) = g(t)$$

for all $t \in (a, b)$ with $y^{(i)}(t_0) = \alpha_i$, for i = 0, ..., n - 1.

Cookbook problems. Solve:

- 1) Problems 1 and 12 from Cookbook-I
- 2) Problems 2 and 14 from Cookbook-II.
- **3**) For what values of r is $y = t^r$ a solution of $t^2y'' + 4ty' 10y = 0$?
- 4) Show that the space of solutions to the differential equation

$$y^{(n)}(x) + p_1(x)y^{(n-1)}(x) + \dots + p_n(x)y(x) = 0$$

in the interval (a, b), where p_i are continuous on (a, b), is an **R**-vector space of dimension n.

Vector valued linear differential equations. We identify \mathbf{R}^n with column vectors $\boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$. Let

$$A(t) = \begin{bmatrix} a_{11}(t) & \dots & a_{1n}(t) \\ a_{21}(t) & \dots & a_{2n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \dots & a_{nn}(t) \end{bmatrix}$$

be an $n \times n$ real matrix of continuous real-valued functions $a_{ij}(t), 1 \leq i, j \leq n$ on an interval (a, b). Regard a column of continuous functions $\boldsymbol{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}$ on (a, b) as a continuous map $\boldsymbol{x} \colon (a, b) \to \mathbf{R}^n$ in the usual way. We say \boldsymbol{x} is k-times differentiable on (a, b) if each $x_i(t)$ is k-times differentiable on (a, b) and in this

case $\frac{d^k \boldsymbol{x}(t)}{dt^k} = \boldsymbol{x}^{(k)}(t)$ is defined to be the vector whose entries the k-fold derivatives

of $x_i(t)$, i = 1, ..., n. The first derivative of \boldsymbol{x} , if it exists, is often denoted $\dot{\boldsymbol{x}}$, or sometimes $\dot{\boldsymbol{x}}(t)$. Consider the equation

(*)
$$\dot{\boldsymbol{x}}(t) = A(t)\boldsymbol{x}(t).$$

Equation (*) is called a *a vector valued first order linear differential equation*, or an \mathbf{R}^n -valued first order linear differential equation.

Later in the course we will prove the following theorem (you may assume it for now).

Theorem 2. Let t_0 be a point in (a,b). Then for each $\alpha \in \mathbb{R}^n$, there exists a unique solution $\mathbf{x}(t)$ in (a,b) to (*) such that $\mathbf{x}(t_0) = \alpha$.

5) Show that the solutions to (*) form an *n*-dimensional real vector space.

The constant A case. In the above situation suppose $(a, b) = \mathbf{R}$ and A is a constant matrix of functions. For each $s \in \mathbf{R}$, define a map

$$g(s): \mathbf{R}^n \to \mathbf{R}^n$$

in the following way:

$$g(s)(\boldsymbol{\alpha}) = \boldsymbol{x}(s), \qquad (\boldsymbol{\alpha} \in \mathbf{R}^n)$$

where $\boldsymbol{x} \colon \mathbf{R} \to \mathbf{R}^n$ is the unique solution to (*) with $\boldsymbol{x}(0) = \boldsymbol{\alpha}$. Show:

- **6**) The map g(s+t) = g(s)g(t) for all s and t in **R**, and g(0) is the identity map.
- 7) Each g(s) is an invertible linear transformation. (This, combined with the previous problem, shows that g is a group homomorphism from \mathbf{R} to the group of invertible linear transformations of \mathbf{R}^{n} .)
- 8) Identifying linear endomorphisms of \mathbf{R}^n with $n \times n$ matrices, show that

$$\lim_{t \to 0} \frac{g(t) - g(0)}{t} = A$$

9) Show that every *n*-th order linear differential equation of the form

(**)
$$y^{(n)}(t) + p_1(t)y^{(n-1)}(t) + \dots + p_n(t)y(t) = 0$$

where p_i are continuous functions on an interval (a, b), is equivalent to a first order linear \mathbf{R}^n -valued linear differential equation of the form (*) on (a, b) such that the if $\boldsymbol{x}(t)$ is a solution to (*) on (a, b), then $x_1(t)$ is a solution to (**), where x_1 is the first co-ordinate of \boldsymbol{x} . Conclude that Theorem 1 is a special case of Theorem 2.