HW 1

Cookbook problems. Solve:

- 1) Problems 3 and 24 from Cookbook-I.
- 2) Problems 27 and 28 from Cookbook-1
- 3) Problems 1 and 5 from Cookbook-2

Time and state reversal. Let

(*) $\dot{\boldsymbol{x}} = \boldsymbol{v}(\boldsymbol{x}), \quad \boldsymbol{x}(t_0) = \boldsymbol{x_0}$

be an autonomous IVP, and as in Lecture 2, let $(*)_{tr}$ and $(*)_{sr}$ be the time reversal and state reversal of (*). Let Ω denote the state space of (*), and assume that the map $\boldsymbol{v}: \Omega \to \mathbf{R}^n$ is \mathscr{C}^1 .

- 4) Let $\varphi: (a, b) \to \mathbf{R}$ be a solution of $(*), \varphi^{\mathrm{tr}}$ and φ^{sr} the time and state reversals of φ respectively. Show that $\varphi^{\rm tr}$ and $\varphi^{\rm sr}$ are solutions of $(*)_{\rm tr}$ and $(*)_{\rm sr}$ respectively.
- **5**) Show that
 - (a) $(\boldsymbol{\varphi}^{\mathrm{tr}})^{\mathrm{tr}} = \boldsymbol{\varphi}.$

 - (b) $(\boldsymbol{\varphi}^{\mathrm{sr}})^{\mathrm{sr}} = \boldsymbol{\varphi}.$ (c) $(\boldsymbol{\varphi}^{\mathrm{sr}})^{\mathrm{tr}} = (\boldsymbol{\varphi}^{\mathrm{tr}})^{\mathrm{sr}}.$