
COMPACT RIEMANN SURFACES

HW

If a problem is labelled B2 then it is meant only for B.Sc 2nd years.
If γ : [α, β] is a path in C and φ is a non-negative real-valued measurable function

on the image of γ, then we write
∫
γ
φ(z)|dz| as a shorthand for

∫ β
α
φ(z)|γ′(t)| dt. In

many of the following exercises you may need the following version of the Dominated
Convergence Theorem (or DCT for short) for complex integrals, and you are allowed
to use this theorem:

The Dominated Convergence Theorem (DCT) Let γ be a path in C and
{φn} a sequence of measurable complex-valued functions on the image of γ such
that (a) φn → φ pointwise as n → ∞, (b)

∫
γ
|φn(z)||dz| < ∞, and (c) there exists

a measurable function Ψ on the image of γ such that |φn| ≤ |Ψ| for all n and∫
γ
|Ψn(z)||dz| <∞. Then

lim
n→∞

∫
γ

φn(z)dz =

∫
γ

φ(z)dz

You may assume all functions that occur in these exercises are measurable, because
they will be continuous on the image of γ.

Basic function theory

In what follows you may assume results from the notes posted (notes1.pdf) on basic
function theory, except the generalized Cauchy’s theorem, and the result in Remark
2.5.5 of those notes, or a result specifically eschewed, or a result from the notes that
you are specifically asked to prove.

(1) (B2) If f(z) is analytic on a domain Ω and u(z) and v(z) are the real and
imaginary parts of f(z) show that

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

on Ω.

(2) Suppose C is a circle of radius r > 0 centered at a ∈ C, and ϕ : C → C a
holomorphic function. Let D be the open disc bounded by C. Show that
f : D → C defined by

f(z) :=
1

2πi

∫
C

ϕ(ζ)dζ

ζ − z
is holomorphic on D. [Hint: You need a lower bound for the absolute
value of the denominator in a neighborhood of z. To differentiate under
the integral sign you will need the DCT when you apply the definition of a
derivative.]
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(3) (B2) Suppose a is the centre of an open disc D such that f(z) is an analytic
function in D \ {a} and limz→a(z − a)f(z) = 0 (in other words f(z) has a
removable singularity at a). Show that there is a an analytic function g(z)
on D which extends f(z). [Hint: Use the result from the previous problem.]

Implicit and Inverse function theorems

Let f(z) be analytic in a neighborhood of z0 and suppose w0 = f(z0) and
f ′(z0) 6= 0. Pick a disc D centered at z0 such that f(z) is analytic on its closure
D and such that z0 is the only solution of f(z) = w0 in D. Let C be the circle
bounding D with positive orientation. Let γ be the image of C and U ⊂ C be the
connected component of C\γ containing w0. For w ∈ U define g(w) by the integral
formula:

g(w) =
1

2πi

∫
C

zf ′(z)dz

f(z)− w
.

(4) Show that g(w) takes values in D.

(5) Is f(D) = U? Why or why not?

(6) Show that f |g(U) : g(U) → U is bijective and its inverse is g : U → g(U).
Conclude that f is biholomorphic on g(U).

In the exercises that follow, the statements, as well as the proofs work more
or less verbatim for the more general case of an analytic function of two variables
defined on an open set of C2, but I did not want to get into the definitions and
properties of analytic functions of two variables, and so am restricting myself to
polynomials.

Let C[U, V ] be the polynomial ring in two variables over C. Set

∂1 :=
∂

∂U
: C[U, V ]→ C[U, V ]

and

∂2 :=
∂

∂V
: C[U, V ]→ C[U, V ].

Let p ∈ C[U, V ] be a polynomial in two variables and suppose (z0, w0) ∈ C2 is
a point such that p(z0, w0) = 0 and ∂2p(z0, w0) 6= 0. Fix an open disc D centered
at w0 such that w0 is the only solution of p(z0, w) = 0 on the closure D of D (this
is possible since p(z0, w) is a polynomial of w since z0 is fixed). Let C be the circle
bounding D and assume C is given its positive orientation (i.e., counter-clockwise).
Let

G = {z ∈ C | p(z, w) 6= 0, ∀w ∈ C}.

By Exercise (7) below, G is open. Let G0 be the connected component of G con-
taining z0.
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(7) Let K be a non-empty compact set in C. Show that the set

S := {z ∈ C | p(z, w) 6= 0, ∀w ∈ K}

is open in C. [Hint: This only needs the continuity of p.]

(8) (a) For z ∈ G show that

n(z) :=
1

2πi

∫
C

∂2p(z, w)dw

p(z, w)

is constant on connected components of G. [Hint: Use DCT to show
that z 7→ n(z) is continuous. How does that help?]

(b) What is the value of n(z) on G0?

(9) Fix z∗. Show that there is a closed disc ∆ centered at 0 ∈ C such that

(h,w) 7→ w

h

[
∂2p(z

∗ + h,w)p(z∗, w)− ∂2p(z
∗, w)p(z∗ + h,w)

p(z∗ + h,w)p(z∗, w)

]
is bounded on ∆× C.

(10) Show that the function f : G0 → C defined by

f(z) :=
1

2πi

∫
C

w∂2p(z, w)dw

p(z, w)

is holomorphic, takes values in D, and

p(z, f(z)) ≡ 0

on G0. [Note: This is the implicit function theorem for holomorphic func-
tions.]

In the next few question f , C, D, γ, g, U etc be as in Problems 4, 5, and 6.
Let Γ ⊂ D be Γ := f−1(γ) ∩ D, where we regard γ as a subset of C rather than
as a path. Note that C ⊂ Γ, if we regard C as a set rather than as a path. Let
R := D \ Γ. Note that R is an open subset of D and hence of C. Let V ⊂ R be the
connected component containing z0.

(11) Show that

z 7→ 1

2πi

∫
C

f ′(ζ)dζ

f(ζ)− f(z)

is constant on connected components of D \ Γ. What is its value on V ?

(12) Show that

z 7→ 1

2πi

∫
C

ζf ′(ζ)dζ

f(ζ)− f(z)

is holomorphic on R. What is it on V ?

(13) Show g(U) = V , and that f |U and g are inverses of each other.
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The problems below are related to Problems 7, 8, 9, and 10. Let

p(U, V ) = a0(U)V n + a1(U)V n−1 + · · ·+ an−1(U)V + an(U)

where ai(U) ∈ C[U ] for i = 0, . . . , n. Let z0 ∈ C be a complex number such
that p(z0, V ) ∈ C[V ] has n distinct roots, w∗1 , . . . ,w∗n in C (note that this means
a0(z0) 6= 0.

(14) Show that there is an open neighborhood U of z0 and n holomorphic func-
tions w1, . . . , wn on U such that for i, j ∈ {1, . . . , n} we have
• wi(z0) = w∗i ,
• p(z, wi(z)) ≡ 0 on U, and
• wi(U) ∩ wj(U) = ∅ if i 6= j.

(15) Let U and wi : U → C, i = 1, . . . , n be as in Problem 14 and by shrinking
U if necessary, assume U is connected. Show that if w : U→ C is any holo-
morphic function such that p(z, w(z)) ≡ 0 on U, then we have a functional
identity w = wi for some i ∈ {1, . . . , n}.

Basic Riemann Surfaces

Suppose X is a Riemann surface and z : U → V is a coordinate chart on X (in
other words V is an open subset of C and U and V are isomorphic via z). Suppose
f : U → P1 is a meromorphic function. Let g : V → P1 be the meromorphic function
f ◦ z−1. Then f is a holomorphic function on U \ Σ, where Σ is a discrete subset
of U . Note that f(Σ) is discrete in V and g is holomorphic function on V \ f(Σ).
Let g′ be the derivative of g on V \f(Σ). Then (g′, f(Σ) represents a meromorphic
function on V which we again denote g′.

Define the derivative of f with respect to z on U to be the meromorphic function
given by the formula:

df

dz
:= g′ ◦ z.

Note that df(z)
dz is meromorphic on U and holomorphic on U \Σ. For the next three

problems this notation will be regarded as fixed.

(16) Let z∗ : U →W be another chart on the same open set U .

(a) Show that
df

dz∗
=
df

dz

dz

dz∗
.

(b) Show that dz
dz∗ is nowhere vanishing on U and

1
dz
dz∗

=
dz∗

dz

on U .
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(17) Suppose x ∈ U and a = z(x).

(a) Show that f can be expanded as a Laurent series in z − a in an open
neighbourhood of a in U in such a way that the principal part of the
Laurent series is a finite series. [Recall: If

∑∞
−∞ pn(z−a)n is a Laurent

series, then its principal part is
∑−1
−∞ pn(z − a)n.]

(b) Without loss of generality, assume that the open neighbourhood on
which the Laurent series expansion asserted above is the open set U .
Say f =

∑∞
n=−∞ an(z − a)n. Show that the derivative of f with re-

spect to z is given by
∑∞
n=−∞(n + 1)an+1(z − a)n. You may assume

(for both parts) analogous theorems for holomorphic functions on the
complex plane.

(18) Suppose x ∈ U and a = z(x). Let f =
∑∞
n=−∞ an(z − a)n be the Laurent

expansion of f with respect to z − a. Define the order of f at x, denoted
ordx(f), to be the integer n such that ai = 0 for all i < n and an 6= 0.
(a) Show that ordx(f) is independent of the local chart z : U → V .
(b) Show that {x | ordx(f) 6= 0} is a discrete set.

Let P denote the space (C2\{0})/∼, where ∼ is the equivalence relation (x, y) ∼
λ(x, y) for (x, y) ∈ C2 \{0} and λ ∈ C∗ := C\{0}. Let [x, y] denote the equivalence
class of (x, y) ∈ C2 \ {0}. Set 0P = [0, 1] and ∞P = [1, 0]. Let us also agree to
denote by S the Riemann-sphere, with its standard complex structure. Let S and
N denote the South and North poles respectively. Let

πN : S \N → C

denote the stereographic projection from N and

πS : S \ S → C

the stereographic projection from S followed by complex conjugation. The complex
plane is to be regarded as the equatorial plane for both the stereographic projection.

In the same fashion, for i = 1, 2 define

p1 : P \∞P → C

by [x, y] 7→ x/y and

p2 : P \ 0P → C
by [x, y] 7→ y/x.

(19) Show that πS and πN give a complex structure on S which makes S into a
compact Riemann surface.

(20) Show that pi are homeomorphisms where P is given the standard quotient
topology. Show also that ϕ1 := p−1

1 ◦πN and ϕ2 := p−1
2 ◦πS agree on the

intersection of their domains, namely on S \ {S, N}. Conclude that we
have a homeomorphism ϕ : S → P such that ϕ restricts to ϕ1(= ϕ2) on
S \ {S, N}.
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Note that ϕ gives a complex structure on P by transferring the complex structure
from S on to P. This is (obviously) the unique complex structure on P such that
ϕ is holomorphic. The common Riemann surface structure on P and S is what we
are calling P1. For those who know some algebraic geometry, P is the projective
line. We are using the symbol P1 for the Riemann sphere to remind ourselves of its
“other role” as the projective line.

(21) Suppose f : X → Y is a non-constant holomorphic map between compact
Riemann surfaces of degree n. Show that for any y ∈ Y∑

P∈f−1(y)

eP = n.

Differential Forms

For the following problems, we assume familiarity with differential forms on
manifolds. If X is a Riemann surface, and ω a 1-form, then ω is said to be a
holomorphic 1-form, or a holomorphic differential if in local co-ordinates ω = fdz
where z : U → V is a co-ordinate chart and f : U → C is holomorphic. In somewhat
greater detail, ω is completely determined by data of the form {(fα, zα)}α, where
zα : Uα → C are co-ordinate charts on X which give an atlas on X and the relation
fβ = fα

dzα
dzβ

holds on Uα ∩ Uβ . There is an obvious equivalence of such data. The

pair (fα, zα) is to be then regarded as representing fαdzα.
If the fα above are meromorphic rather than holomorphic, then ω is said to be

a meromorphic 1-form or a meromorphic differential. A holomorphic differential
is certainly a meromorphic differential. If ω is a meromorphic differential and P a
point of X, then we can talk about the order of ω at P in the following way: Let
z : U → C be a co-ordinate chart around P and suppose ω is given over U by fdz.
Then the order of ω at P , denoted ordP (ω), is given by

ordP (ω) = ordP (f).

Suppose ω is a meromorphic differential on X and P ∈ X a point. Let z : U → C
is a co-ordinate chart on X, with P ∈ X and z(P ) = 0. Let ω have the local
representation fdz on U , and suppose

∑∞
i=N anz

n is the Laurent expansion of f
around P (with N an integer, perhaps negative). Define the residue of ω at P to
be

resPω := a−1.

A priori the residue depends on the local co-ordinate z. Problem (25) asks you to
show that it is independent of the local co-ordinate z.

(22) Show that if ω is a holomorphic form on a Riemann surface X, then dω = 0.

(23) Show that if X is a compact Riemann surface and f ∈M (X), then∑
P∈X

ordP (f) = 0.
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(24) Let ω, ω1 and ω2 be meromorphic differentials on a compact Riemann sur-
face X.

(a) Let P ∈ X. Show that ordP (ω) is well defined (i.e., does not depend
on the local co-ordinate chosen around P ) and is zero for all but a
finite number of P . [Note: One does not need compactness to show
that the order of ω at P is well-defined.]

(b) Show that ∑
P

ordP (ω1) =
∑
P

ordP (ω2).

(25) Let X be a Riemann surface, ω a meromorphic differential on X.
(a) Let P ∈ X. Show that resP (ω) does not depend on the local co-

ordinate z chosen around P .

(b) Show that the set Sω = {x | resxω 6= 0} is discrete

(c) Let X be compact. Show that∑
P

resPω = 0.

Euler characteristic

If X is a compact Riemann surface, it can be trianguated (Rado’s Theorem).
One can show (and we will give an indication in class) that if T is a triangulation
then the number

χ(X) := VT − ET + FT

does not depend on T. Here, VT is the number of vertices in T, ET is the number
of edges in T, and FT is the number of faces in T. The number χ(X) is called the
Euler characteristic of X.

From Exercise (24) we know that if ω is a meromorphic differential on X, then
the integer

Φ(X) :=
∑
P

ordP (ω)

is independent of ω. The aim of the next set of exercises is to show the close
connection between χ(X) and Φ(X).

(26) Suppose f : X → Y is a non-constant holomorphic map between compact
Riemann surfaces of degree n. Show that eP − 1 is zero for all but a finite
number of points, and further show that

χ(X) = nχ(Y )−
∑
P∈X

(eP − 1).
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(27) Suppose f : X → Y is a non-constant holomorphic map between compact
Riemann surfaces of degree n. Show that

Φ(X) = nΦ(Y ) +
∑
P∈X

(eP − 1).

(28) Show using the fact that a compact Riemann surface has enough functions,
that

χ(X) = −Φ(X).

[Hint: Compute χ(P1) and Φ(P1).]

Function fields and compact Riemann surfaces

For a function field F over C we use the symbol R(F ) for the corresponding set
of valuation rings of F . And for a compact Riemann surface X we write M (X) for
its field of meromorphic functions. We will accept the theorem guaranteeing enough
functions on such an X for the purposes of the HW exercises that follow in this
section. The category of compact Riemann surfaces and non-constant holomorphic
functions will be denoted X and the category of function fields over C will be
denoted F . For a valuation ring A of a function field F ∈ F , we write mA for
its maximal ideal and identify A/mA with C via the isomorphism defined by the
composite C → A → A/mA. The valuation ring A will be identified, as in class,
with the map ϕA : F → PF . For X ∈ X and x ∈ X, we write Ax ∈ RM (X) for
the valuation ring of M (X) consisting of elements which do not have a pole x. For
f ∈ F , f∗ : R(F )→ P1 is the map A 7→ ϕA(f).

The above are mainly reminders of the conventions we established in class, not
an exhaustive list of them.

(29) Let F ∈ F , and f ∈ F . Show that f∗ : R(F ) → P1 is continuous. (We
proved it is holomorphic in class, assuming continuity. This exercise is for
completeness.)

(30) Let F ∈ F . Complete the last part of the proof that R(F ) is connected,
i.e., show that if f ∈ F \ C and the fibre cardinality of the holomorphic
map f∗ : R(F ) → P1 is almost everywhere m, then dimC(f) MR(F ) = m.
[Note: As we noted in class, this means: (a) M (R(F )) is a field, (b) The
map F → MR(F ) given by g 7→ g∗ is an isomorphism of fields, and (c)
R(F ) is connected.]

(31) Let X ∈ X and define p(X) : X → RM (X) by x 7→ Ax. Show that p(X)
is holomorphic.

(32) Let α : F → G be a morphism in F . Show that R(α) is holomorphic (you
will have to first show it is continuous).

The ∂-derivative

Let X be a Riemann surface and z : U → C a holomorphic co-ordinate chart on
X. Let z = x+ iy be the standard decomposition of the co-ordinate z into its real
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and imaginary parts. Thus (x, y) : U → R2 will be a real co-ordinate chart on the
open set U if X is regarded as a 2-manifold over R. We have the standard vector
fields ∂

∂x and ∂
∂y on U , as well as differential forms dx and dy. Write TX → X

and T ∗X → X for the tangent and cotangent bundles of X. Recall that a (smooth)
vector field v on U is nothing but a C∞-section of TX → X over U , i.e., a C∞-map
v : U → TX such that the composite

U
v−→ TX → X

is the identity map on U . In particular ∂
∂x and ∂

∂y are such sections of TX over U .

Similarly, (smooth) differential 1-forms over U are C∞-sections of the co-tangent
bundle over U , i.e. C∞-maps ω : U → T ∗X such that the composite

U
ω−→ T ∗X → X

is the identity on U . Let the space of vector fields over X be denoted T (X) and
the space of differential 1-forms over U by T ∗(X) as well as byA 1(X). The space
of differential 2-forms over X (always C∞) will be denoted A 2(X).

Consider the C-vector spaces TC(X) := T (X)⊗RC and A 1
C (X) := A 1(X)⊗RC.

These can be regarded as the space of C∞-sections over X of the complex bundles
TX ⊗RC→ X and T ∗X ⊗RC→ X (fibre-wise tensor products give us these spaces).

Elements of TC(X) are called complex vector fields over U and we have a natural
decomposition

(*) TC(X) = T (X)⊕ iT (X)

of real vector spaces. Similarly, elements of A 1
C (X) are called complex 1-forms over

X and we have a natural decomposition

(**) A 1
C (X) = A 1(U)⊕ iA 1(X)

of R-vector spaces.
Let us return to our coordinate chart (U, z). The 1-forms dx ∈ A 1(U) and

dy ∈ A 1(U) allow us to define

dz = dx+ idy ∈ A 1
C (U)

and

dz̄ = dx− idy ∈ A 1
C (U)

and every complex 1-form ω ∈ A 1
C (U) can be written uniquely as

ω = f(z)dz + g(z)dz̄

with f and g complex-valued C∞-functions on z(U).
We can also define

A 2
C (X) := A 2(X)⊗R C

Elements of A 2
C (X) are called complex 2-forms and in local holomorphic co-ordinates

these can written in the form f(z)dz ∧ dz̄ with f a C∞ complex-valued function.
Recall, we had earlier defined holomorphic 1-forms. These can be identified with

complex 1-forms such that in the above representation, if f is holomorphic on z(U)
and g ≡ 0 on z(U).

There are two complex vector fields associated with our given co-ordinate chart
z : U → C, namely

∂

∂z
:=

1

2

[
∂

∂x
− i ∂

∂y

]
9



and
∂

∂z̄
:=

1

2

[
∂

∂x
+ i

∂

∂y

]
.

Finally, it makes sense to talk about holomorphic vector fields on a Riemann
surface X. These are vector fields v on X such that for every local holomorphic
co-ordinate z, v can be written as f∂/∂z with f holomorphic in the co-ordinate
chart of z. The last problem shows that if v is a holomorphic vector field on X
if we can find an atlas on X of holomorphic co-ordinate charts such that on each
member of (U, z) of the atlas, v is of the form f∂/∂z with f holomorphic.

At this point it is good to remember that TX and TX⊗RC are naturally complex
manifolds of dimension 2 and 3 respectively. It therefore makes sense to talk about
holomorphic maps to and from these spaces from other complex manifolds (notably
X).

(33) Show that a C∞-function f : U → C is holomorphic if and only if

∂f

∂z̄
= 0.

[Remark: One can define these operators for a larger class of functions,
example any function f for which the total R-derivative exists as a matrix
valued function on U . The statement remains true for f which is C1.]

(34) (a) Show that if f : U → C is a smooth function, then in A 1
C (U) one has

df =
∂f

∂z
dz +

∂f

∂z̄
dz̄.

[Here, df is defined as df = ∂f
∂xdx+ ∂f

∂y dy or, more canonically, by the

formula df(v) = v(f).]

(b) Show that if f : X → C is a C∞-function, we have a well defined 1-
forms ∂ f and ∂ f on X such that on a local holomorphic coordinate
chart (U, z),

∂ f |U =
∂f(z)

∂z
dz

and

∂ f |U =
∂f(z)

∂z
dz

(35) If z∗ : U → C is another holomorphic co-ordinate chart on U , show that

∂

∂z∗
=

dz

dz∗
∂

∂z
.

Deduce that if v = f ∂
∂z is a complex vector field on U with f : U → C

holomorphic, then v = g ∂
∂z∗ with g : U → C also holomorphic. [You have

to show that if v = g ∂
∂z∗ + h ∂

∂z̄∗ is the representation of v in terms of the
chart z∗, then h = 0 on U and g is holomorphic.]
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(36) Show that there is a decomposition of TC(X) as

(†) TC(X) = T 1,0(X)
⊕

T 0,1(X)

where v ∈ T 1,0(X) if the vector field v : X → T (X) ⊗ C is locally of
the form f(z)∂/∂z on a holomorphic chart (U, z), with f : U → C a C∞-
function on U , and v is in T 0,1 if on this chart it can be expressed as locally
as f(z)∂/∂z̄ for f a C∞-function on U . Is the decomposition (†) the same
as the decomposition (*)?

(37) Suppose (U, z) is a holomorphic co-ordinate chart of X and z = x + iy is
the decomposition of the co-ordinate z into its real and imaginary parts.
(a) Suppose u and v real-valued C∞- functions on U . Consider the local

map of vector fields v = u∂/∂x + v∂/∂y 7→ (u + iv)∂/∂z = w(v, z).
Show that w(v, z) is independent of z. In other words, if z∗ : U →
C is another holomorphic co-ordinate on U , and z = x∗ + iy∗ its
decomposition into real and imaginary parts, then show that w(v, z) =
w(v, z∗).

(b) Show that there is a natural global isomorphism

w : T (X) −→∼ T 1,0(X)

which on holomorphic co-ordinate charts (U, z) restricts to w(−, z).

(38) Show that there is a decomposition

A 1
C (X) = A 1,0(X)

⊕
A 0,1(X)

where in local holomorphic coordinates, elements of A 1,0(U) look like
f(z)dz and those of A 0,1(U) look like f(z)dz̄, with f(z) a C∞ complex
valued function on U .

(39) Show that holomorphic vector fields v : X → TX ⊗R C are holomorphic
maps. Show also that such a v corresponds to a holomorphic section of
TX → X.

(40) Let ω ∈ A 1
C (X). Suppose on a holomorphic coordinate chart (U, z) we

have

ω|U = P (z)dz +Q(z)dz̄.

Define

∂ ω|U =
∂Q

∂z
(z)dz ∧ dz̄

and

∂ ω|U =
∂P

∂z̄
(z)dz̄ ∧ dz

= −∂P
∂z̄

(z)dz ∧ dz̄.

Show that ∂ ω|U and ∂ ω|U do not depend on the holomorphic co-ordinate
z on U . Conclude that we have maps

∂ : A 1
C (X)→ A 2

C (X)
11



and

∂ : A 1
C (X)→ A 2

C (X).

(41) Show that ω ∈ A 1,0(X) is a holomorphic 1-form if and only if ∂ ω = 0.

Elliptic curves and addition formulas

In what follows we fix a lattice Λ in C. For definiteness,

Λ = Zω1

⊕
Zω2.

The symbol ℘ will denote the Weierstrass ℘-function with respect to Λ. The com-
plex numbers e1, e2, and e3 have their usual meaning with respect to the above
data.

The symbol E will denote the affine plane curve

y2 = 4(x− e1)(x− e2)(x− e3)

and E will denote its projective completion in P2. The addition in E induced by
the canonical isomorphism C/BL −→∼ E will be denoted ⊕ and subtraction by 	.

(42) For k a non-negative integer, define Gk =
∑
ω∈Λ\0(1/ω2k). Show that

℘′
2

= 4℘3 − 60G2℘− 140G3.

(43) Show
(a) 	[α, β, γ] = [α,−β, γ] for every [α, β, γ] ∈ E.
(b) There exist polynomials Pi(X, Y, Z; U, V, W ), i = 1, 2, 3, homoge-

neous of degree 2 in X, Y , Z, and homogeneous of degree 2 in U , V ,
and W , such that

[α, β, γ]⊕ [λ, µ, ν] =

[P1(α, β, γ; λ, µ, ν), P2(α, β, γ; λ, µ, ν), P3(α, β, γ; λ, µ, ν)].

(44) Let

λ =
e1 − e3

e2 − e3

and

j =
(1− λ+ λ2)3

λ2(1− λ)2
.

Prove Salmon’s theorem, viz., two elliptic curves C and C ′ are isomorphic
if and only if they have the same j. You may use the fact that every ellip-
tic curve is of the form C/Λ, and you may use the (℘, ℘′) parameterization.

(45) A flex point on a projective plane curve is defined to be a point where the
tangent line is a point of triple contact with the curve. Show that E has
nine flex points and that a line joining any two passes through a third.

12



(46) Show that 3n points (℘(ui), ℘
′(ui)), 1 ≤ i ≤ 3n lie on a curve of degree n

if and only if
∑n
i=1 ui ∈ Λ.

(47) Show that the addition theorem for the ℘-function can be written as∫ a

∞

dx√
q(x)

+

∫ b

∞

dx√
q(x)

=

∫ −a−b+ 1
4

(√
q(a)−

√
q(b)

a−b

)2

∞

dx√
q(x)

where q(x) = 4(x − e1)(x − e2)(x − e3). Give suitable interpretations for
the integrals and for the resulting “equality”.

(48) (Euler 1753) Prove∫ u

0

dt√
1− t4

+

∫ v

0

dt√
1− t4

=

∫ w

0

dt√
1− t4

where

w =
u
√

1− v4 + v
√

1− u4

1 + u2v2
.

(49) (Fagnano 1718) Here is the result that began it all: Fagnano’s result on
doubling the arc of the lemniscate. Show that∫ r

0

dx√
1− x4

= 2

∫ u

0

dx√
1− x4

where

r =
2u
√

1− u4

1 + u4
.

Here is some information being offered as background: The integral∫ u

0

dx√
1− x4

is the arc length of the lemniscate (x2 + y2)2 = x2 − y2 calculated from
the origin to a point on the lemniscate at a distance u from the origin.
The lemniscate can also be described as the locus of a variable point Q
whose distances d1 and d2 from two fixed point P1 and P2 are such that
the product d1d2 is a constant. The picture is included below (at worst see
the next page).
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Vector Bundles, Cech cohomology

The notations and conventions are as in the document paracompact.pdf posted
on the moodle site. Smooth and C∞ are to be regarded as inter-changeable terms.
Unless otherwise stated all spaces are smooth differentiable manifolds and all vector-
bundles are smooth and complex valued.

(50) Let E → X and F → X be two rank n vector bundles, U = {Uα} a common
trivializing open cover for both of them, and {gαβ}, {hαβ} transition maps
for E and F respectively.
(a) If we have smooth maps fα : Uα → GLn(C), one for each index α, such

that

gαβ(x)fβ(x) = fα(x)hαβ(x), x ∈ Uαβ

then show that E and F are isomorphic.
(b) Suppose E and F are holomorphic, what modifications would you

make to the above statement to get a sufficient condition for E and F
to be isomorphic as holomorphic bundles?

(51) Let X be paracompact and E → X a vector bundle. Let U = {Uα |α ∈ I}
be a locally finite cover of X. Show that

0→ Γ(X E (E))
ı−→ C0(U , E (E))

δ−→ C1(U , E (E))
δ−→ · · · δ−→ Cq(U , E (E))

δ−→ . . .

is exact.

(52) Let X be a topological space and p ∈ X a point. Let C̃p be the sheaf given
by

C̃p(U) =

{
C if p ∈ U
0 otherwise

with the restriction maps rVU being 1C if p ∈ U and zero otherwise. Show
that

Hq(U , C̃p) =

{
C if q = 0

0 if q ≥ 1

(53) Let X be a Riemann surface and E → X a holomorphic vector-bundle of
rank n. Show that there is a well defined map

∂ : E (E)→ E 0,1(E)

such that if (U, z) is a co-ordinate chart on which E is holomorphically
trivial and E (E)|U is identified with E n|U via this trivialization on U , then
∂ is given on open subsets of U byf1

...
fn

 7→

∂f1
∂z dz

...
∂fn
∂z dz

 .
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(54) Let X be a Riemann surface and E → X a holomorphic vector bundle.

(a) Show that if E = E1,0, then E 0,1(E) = E 1,1
X .

(b) For every open set U in X, show that

Γ(U, E) = ker (E (E)(U)
∂−→ E 0,1(E)(U)).

(c) For every open set U in X, show that

Γ(U, Ω1
X) = ker (E 1,0

X (U)
∂−→ E 1,1

X )(U).

In the problem that follows you may use the following result (which will be
proved in class): Suppose U is an open subset of C and gU → C is a smooth
function. Then the differential equation

∂f

∂z
= g

has a smooth solution in U .

(55) Let X be a Riemann surface and E → X a holomorphic vector bundle. For
q ≥ 0, define the q-th cohomology with coefficients in E, denoted Hq(X, E),
to be the q-th cohomology of the complex

0→ Γ(X, E (E))
∂−→ Γ(X, E 0,1(E))→ 0.

(a) Show that H0(X, E) = Γ(X, E).
(b) If X is paracompact and U is a locally finite open cover by holomor-

phic co-ordinate charts of X, show that there are natural isomorphisms

Hq(U , E) −→∼ Hq(X, E) q = 0, 1, . . . .
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