LEFT ADJOINTS TO DIRECT IMAGES

PRAMATHANATH SASTRY

1. The topological case

For a topological space Z, P_Z will denote the category of presheaves on Z and Sh_Z the category of sheaves of abelian groups on Z.

1.1. **Inverse Image.** Let $f: X \to Y$ be a continuous map between topological spaces. The inverse image $f^{-1}\mathscr{G}$ of a sheaf \mathscr{G} on Y is the sheaf on X which is obtained by sheafifying the presheaf

(1.1.1)
$$U \mapsto \varinjlim \mathscr{G}(W).$$

where the direct limit varies over open sets W of Y such that $U \subset f^{-1}(W)$. The restriction maps are the obvious ones. In this section we denote the presheaf defined by (1.1.1) by $f^{\#}\mathscr{G}$. The symbol $f^{\#}\mathscr{G}$ will be used for a different functor in the next section. By the universal property of sheafification, for each such \mathscr{G} and each $\mathscr{F} \in \operatorname{Sh}_X$, we have an isomorphism

(1.1.2)
$$\operatorname{Hom}_{\mathbf{P}_{X}}(f^{\sharp}\mathscr{G},\mathscr{F}) \xrightarrow{\sim} \operatorname{Hom}_{\mathrm{Sh}_{X}}(f^{-1}\mathscr{G},\mathscr{F})$$

which is bifunctorial in \mathscr{F} and \mathscr{G} and such that when $\mathscr{F} = f^{-1}\mathscr{G}$ the sheafification map $\mathscr{G}^{\#} \to f^{-1}\mathscr{G}$ (which is an element in the group on the left side of (1.1.2)) maps to the identity element in $\operatorname{Hom}_{\operatorname{Sh}_X}(f^{-1}\mathscr{G}, f^{-1}\mathscr{G})$ under (1.1.2).

1.2. Adjointness. For $\mathscr{F} \in Sh_Y$ and $\mathscr{G} \in Sh_X$, we claim that there is a bifunctorial isomorphism

(1.2.1)
$$\operatorname{Hom}_{\operatorname{Sh}_X}(f^{-1}\mathscr{G},\mathscr{F}) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{Sh}_Y}(\mathscr{G}, f_*\mathscr{F}).$$

The map (1.2.1) is defined as follows. If $\varphi: f^{-1}\mathscr{G} \to \mathscr{F}$ is a map of sheaves, then, composing with the sheafification map $f^{\sharp}\mathscr{G} \to f^{-1}\mathscr{G}$, we get a map of presheaves $\bar{\varphi}: f^{\sharp}\mathscr{G} \to \mathscr{F}$. In fact, as a little thought shows, the map $\varphi \mapsto \bar{\varphi}$ is the inverse of the isomorphism (1.1.2). Let W be an open subset of Y. Then $(f^{\sharp}\mathscr{G})(f^{-1}(W)) = \mathscr{G}(W)$. Consider the composite

$$\mathscr{G}(W) = (f^{\sharp}\mathscr{G})(f^{-1}(W)) \xrightarrow{\bar{\varphi}(f^{-1}(W))} \mathscr{F}(f^{-1}(W)) = f_{\ast}\mathscr{F}(W).$$

It is easy to see this varies well with W, i.e., that as W varies, we get a map of sheaves $\mathscr{G} \to f_*\mathscr{F}$. We thus have a map

(†)
$$\operatorname{Hom}_{\operatorname{Sh}_X}(f^{-1}\mathscr{G},\mathscr{F}) \to \operatorname{Hom}_{\operatorname{Sh}_Y}(\mathscr{G}, f_*\mathscr{F})$$

To show it is an isomorphism, suppose we have $\psi \in \operatorname{Hom}_{\operatorname{Sh}_Y}(\mathscr{G}, f_*\mathscr{F})$. Let U be an open set in X and W an open set in Y such that $f^{-1}(W) \supset U$. We have a map

$$(*)_W \qquad \qquad \mathscr{G}(W) \longrightarrow \mathscr{F}(U)$$

Date: January 17, 2017.

given by the composite

$$\mathscr{G}(W) \xrightarrow{\psi(W)} f_*\mathscr{F}(W) = \mathscr{F}(f^{-1}(W)) \longrightarrow \mathscr{F}(U).$$

One checks that if W' is an open subset of Y such that $f(U) \subset W' \subset W$ then the diagram

$$\begin{array}{c|c} \mathscr{G}(W) \\ & & \\ \text{restriction} \\ & \\ & & \\ \mathscr{G}(W') \xrightarrow{(*)_{W'}} \mathscr{F}(U) \end{array}$$

commutes. Taking direct limits we get a map

$$\widetilde{\psi}(U) \colon f^{\sharp}\mathscr{G}(U) \to \mathscr{F}(U)$$

and for V an open subset of X contained in U, one checks from the definitions that the following diagram commutes

$$\begin{array}{c} f^{\#}\mathscr{G}(U) & \xrightarrow{\widetilde{\psi}(U)} & \mathscr{F}(U) \\ \text{restriction} & & & & \\ f^{\#}\mathscr{G}(V) & \xrightarrow{\widetilde{\psi}(V)} & \mathscr{F}(V), \end{array}$$

i.e., $\widetilde{\psi}\colon f^{\#}\mathscr{G}\to\mathscr{F}$ is a map of presheaves . We thus have a map

 $\operatorname{Hom}_{\operatorname{Sh}_{Y}}(\mathscr{G}, f_{*}\mathscr{F}) \longrightarrow \operatorname{Hom}_{\operatorname{P}_{X}}(f^{\sharp}\mathscr{G}, \mathscr{F})$

given by $\psi \mapsto \widetilde{\psi}$. Applying (1.1.2) we therefore get

(‡).
$$\operatorname{Hom}_{\operatorname{Sh}_Y}(\mathscr{G}, f_*\mathscr{F}) \longrightarrow \operatorname{Hom}_{\operatorname{Sh}_X}(f^{-1}\mathscr{G}, \mathscr{F})$$

It is easy to see that (\dagger) and (\ddagger) are inverses of each other.

2. The case of schemes

2.1. Now suppose $f: X \to Y$ is a map of schemes. We claim that for an \mathscr{O}_X -module \mathscr{F} and an \mathscr{O}_Y -module \mathscr{G} , we have a bifunctorial isomorphism

(2.1.1)
$$\operatorname{Hom}_{\mathscr{O}_X}(f^*\mathscr{G},\mathscr{F}) \xrightarrow{\sim} \operatorname{Hom}_{\mathscr{O}_Y}(\mathscr{G}, f_*\mathscr{F}).$$

We now change notation and write $f^{\#}\mathscr{G}$ for the presheaf

 $U \mapsto f^{-1}\mathscr{G}(U) \otimes_{f^{-1}\mathscr{O}_Y(U)} \mathscr{O}_X(U).$

By definition $f^*\mathscr{G}$ is the sheafification of $f^*\mathscr{G}$. Note that $f^*\mathscr{G}$ is an \mathscr{O}_X -module. Recall that if $A \to B$ is a map of (commutative) rings, then

(*)
$$\operatorname{Hom}_B(M \otimes_A B, N) \xrightarrow{\sim} \operatorname{Hom}_A(M, N).$$

Now suppose we have an \mathscr{O}_X -module map $f^{\#}\mathscr{G} \to \mathscr{F}$. For each open U in X a map $f^{-1}\mathscr{G}(U) \otimes_{f^{-1}\mathscr{O}_Y(U)} \mathscr{O}_X(U) \to \mathscr{F}(U)$, and hence (via (*)) a map $f^{-1}\mathscr{G}(U) \to \mathscr{F}(U)$. The maps $f^{-1}\mathscr{G}(U) \to \mathscr{F}(U)$ behave well with respect to the open sets U giving us a map of sheaves $f^{-1}\mathscr{G} \to \mathscr{F}$. (This map is easily seen to be a map of $f^{-1}\mathscr{O}_Y$ modules.) From the first section we know that we therefore have a map of sheaves $\mathscr{G} \to f_*\mathscr{F}$. It is not hard to see that this is a map of \mathscr{O}_Y -modules, since it arises from a map of $f^{-1}\mathscr{O}_Y$ -modules. We thus have a map:

$$(**) \qquad \operatorname{Hom}_{\mathscr{O}_{X}}(f^{\sharp}\mathscr{G}, \mathscr{F}) \longrightarrow \operatorname{Hom}_{f^{-1}\mathscr{O}_{Y}}(f^{-1}\mathscr{G}, \mathscr{F}).$$

Conversely, given a map of \mathscr{O}_Y -modules $\psi \colon \mathscr{G} \to f_*\mathscr{F}$, we get from the first section a map $\widehat{\psi} \colon f^{-1}\mathscr{G} \to \mathscr{F}$ and this is seen easily to be a $f^{-1}\mathscr{O}_Y$ -module map. From (*), we have the identification

$$\operatorname{Hom}_{f^{-1}\mathscr{O}_{Y}(U)}(f^{-1}\mathscr{G}(U),\mathscr{F}(U)) \xrightarrow{\sim} \operatorname{Hom}_{\mathscr{O}_{X}(U)}(f^{-1}\mathscr{G}(U) \otimes_{f^{-1}\mathscr{O}_{Y}(U)} \mathscr{O}_{X}(U),\mathscr{F}(U)).$$

Thus the $f^{-1}\mathscr{O}_Y$ -module map $\widehat{\psi}: f^{-1}\mathscr{G} \to \mathscr{F}$ gives rise to a \mathscr{O}_X -module map $f^{\#}\mathscr{G} \to \mathscr{F}$. In other words (**) is an isomorphism, since the two processes are easily seen to be inverses of each other. Moreover, from the universal property of sheafification, we get an \mathscr{O}_X -module map $f^*\mathscr{G} \to \mathscr{F}$. This essentially establishes (2.1.1). For good book-keeping, here is the hierarchy of identifications:

$$\operatorname{Hom}_{\mathscr{O}_{X}}(f^{*}\mathscr{G},\mathscr{F}) \xrightarrow{\sim} \operatorname{Hom}_{\mathscr{O}_{X}}(f^{\#}\mathscr{G},\mathscr{F}) \xrightarrow{\sim} \operatorname{Hom}_{f^{-1}\mathscr{O}_{Y}}(f^{-1}\mathscr{G},\mathscr{F})$$
$$\xrightarrow{\sim} \operatorname{Hom}_{\mathscr{O}_{Y}}(\mathscr{G}, f_{*}\mathscr{F}).$$

The first isomorphism above is from the universal property of sheafification (which one checks respects \mathscr{O}_X -structures). The second is (**) which we have shown is an isomorphism. The third is from the topological case considered in section one, and noting that the adjunction isomorphism there is such that if $f^{-1}\mathscr{G} \to \mathscr{F}$ is a map of $f^{-1}\mathscr{O}_Y$ -modules, then its adjoint, namely $\mathscr{G} \to f_*\mathscr{F}$, is a map of \mathscr{O}_Y -modules.

References

- [EGA-III] A Grothendieck and J. Dieudonne, Élements de Géométrie Algébrique III, Publications Math. IHES 11, Paris, 1961
- [H] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer, New York, 1977.