
DOUBLE COMPLEXES

We work throughout in an abelian category A in which countable direct sums
exist.

There are two related notions of a double complex. We give both versions below.
The second (i.e. what we call an anti-commuting double complex below) is what
you will often find in the older literature—and amongst non-algebraic-geometers.
The first version (which we simple call a double complex, or sometimes a standard
double complex) is the version given by Grothendieck in EGA, and is what most
algebraic geometers and commutative algebraists are used to. The difference is one
of convention.

Standard Double Complexes. A double complex in A , or sometimes in our
class, a standard double complex in A , consists of data A•• = (A, ∂1, ∂2), where

A = (Ap,q)(p,q)∈Z×Z

is a family of objects in A , and

∂1 = (∂p,q1 )(p,q)∈Z ∂2 = (∂p,q2 )(p,q)∈Z

are two families of morphisms

∂p,q1 : Ap,q → Ap+1,q ∂p,q2 : Ap,q → Ap,q+1

such that

∂1∂1 = 0 ∂2∂2 = 0 ∂1∂2 = ∂2∂1.

We often suppress the superscripts p, q when these are either immaterial or easily
deducible from the context. Thus, e.g., we write ∂2 for ∂p,q2 . The maps ∂1 and ∂2
will be called partial coboundaries, and when we wish to be more specific, they will
be called horizontal and vertical (partial) coboundaries respectively. The data fits
into a commutative diagram, whose rows and columns are complexes.

... · · ·
...

...

· · · ∂1 // A0,q+1

∂2

OO

∂1 // · · · ∂1 // Ap,q+1

∂2

OO

∂1 // Ap+1,q+1 ∂1 //

∂2

OO

· · ·

· · · ∂1 // A0,q

∂2

OO

∂1 // · · · ∂1 // Ap,q

∂2

OO

∂1 // Ap+1,q ∂1 //

∂2

OO

· · ·

...

∂2

OO

. . .
...

∂2

OO

...

∂2

OO
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Next consider the direct sum1

TotnA•• :=
⊕

p+q=n

Ap,q.

Define
∂n : TotnA•• → Totn+1A••

by the formula

∂n =
∑

p+q=n

{∂p,q1 + (−1)p∂p,q2 }.

The map within “curly brackets” can be regarded as a map Ap,q → Totn+1A••, tak-
ing values in the subobject Ap+1,q⊕Ap,q+1 of Totn+1A••, whence by the definition
of direct sum, the map ∂n makes sense.

Evidently
∂n+1 ◦∂n = 0

for every n ∈ Z by the relations given between ∂1 and ∂2. We have therefore a
complex (Tot•A••, ∂), called the total complex associated to the double complex
A••.

A morphism of double complexes ϕ : A•• → B•• is (of course) a family of maps
fp,q : Ap,q → Bp,q, one for each ordered pair of integers (p, q), which commute with
vertical and horizontal coboundaries. This naturally induces a map of complexes
Totf : Tot•A•• → Tot•B••

Anti-commutative double complexes. In much of the pre-Grothendieck litera-
ture, double complexes mean a variant of our standard double complexes. The only
difference is that the grids in the diagram on the last page anti-commute rather
than commute. In greater detail, for this course, data of the form K•• = (K, d1, d2)
represents an anti-commuting double complex if K is a family (Kp,q) of objects in
A indexed by Z× Z and d1 = (dp,q1 : Kp,q → Kp+1,q), d2 = (dp,q2 : Kp,q → Kp,q+1)
are families of maps indexed by (p, q) ∈ Z × Z, called the horizontal and vertical
partial coboundaries respectively, such that

d1d1 = 0 d2d2 = 0, d1d2 = −d2d1.
We set (and please pay attention to the notation, especially the accent on the top
left)

′TotnK•• :=
⊕

p+q=n

Kp,q

and define
dn : ′TotnK•• → ′Totn+1K••

by the formula

dn =
∑

p+q=n

(dp,q1 + dp,q2 )

without any sign of the form (−1)p intervening. It is easy to see, with d := (dn)n∈Z,
that ( ′Tot•K••, d) is a complex. We call this complex the total complex associated
with the anti-commuting double complex K••.

I will leave the task of defining maps of anti-commuting double complexes to
you.

1This is where our assumption that A has countable direct sums comes into play. Alternately,
one can assume that the displayed direct sum for TotnA•• is finite for every n ∈ Z.
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Bounded double complexes. Let C•• be a double complex (standard or anti-
commutative). We say it is bounded on the left if there is an integer p0 such that

Cp,q = 0, p < p0.

If this happens we sometimes say C•• is bounded on the left by p0. Similarly C••

is bounded below (by q0) if there exists an integer q0 such that

Cp,q = 0 q < q0.

I leave to you the fun task of defining terms like bounded on the right and bounded
above.

Note that if C•• is bounded on the left and below (resp. above and to the right)
it lives in a translate of the first quadrant (resp. third quadrant) and as such the
direct sum ⊕

p+q=n

Cp,q

is actually a finite sum2 for each n. So in such instances, one can define TotnC••

or ′TotnC•• (as the case may be) without insisting that A have countable direct
sums. In fact we will largely be dealing with such situations.

Tensor product of complexes and the Eilenberg-Zilber map. Suppose A is
a ring, M• a complex of right A-modules, and N• a complex of left A-modules. One
has a double complex of abelian groups C•• given by Cpq = Mp⊗AN

q with obvious
horizontal and vertical coboundary maps. In a somewhat confusing convention, the
total complex Tot(C••) is denoted M•⊗AN

•. It should be denoted Tot(M•⊗AN
•),

and some authors of late do do so. We will stick with the old convention for now.
For the record

M• ⊗A N
• := Tot(C••).

Suppose now that x ∈ hi(M•) and y ∈ Hj(N•) and two elements. Let ξ ∈ M i

and ζ ∈ N j be cocycles representing these cohomology classes. It is easy to see
that ξ ⊗ ζ ∈ M i ⊗A N

j is an (i + j)-cocycle in M• ⊗A N
•. Moreover, one checks

easily, the cohomology class of the cocycle ξ ⊗ ζ depends only on x and y and not
on the representatives ξ and ζ. I leave it to you work this out. The upshot is that
we have a map of abelian groups:

Hi(M•)⊗A H
j(N•) −→ Hi+j(M• ⊗A N

•)

with x ⊗ y mapping to the cohomology class of ξ ⊗ ζ where ξ and ζ are as above.
We therefore have (for each n ∈ Z), a map, the so called Eilenberg-Zilber map:

EZn = EZn(M•, N•) :
⊕

i+j=n

Hi(M•)⊗A H
j(N•) −→ Hn(M• ⊗A N

•).

It is straightforward to see that EZn(M•, N•) is functorial in M• and in N•, i.e. it
is bifunctorial in (M•, N•).
′Totn(M••)

2Draw a picture with such quadrant translates, and look at the intersection of such quadrant
translates with lines having slope −1.
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