ide 4, 2021.
Letter 1
be are antiming with one prof of the following them:
antif
if X is a complete variety, T a reduced, scheme,
I a live bundle on
$$X_T := X_K T$$
, such that $L_0 = X_1 | X_X[i]$
is trivial pr oring to, then $\exists !$ (ong to isomorphicm) live
thuske $M = T$ such that $X = p^X M$.
Recall $k = k$. By a scheme we mean a finite
itype where one k . I print on T will mean a cloud
print, and surve $k = k$, and T is \exists finite type, this is
the same as a k -voltanal print of T.
Recall, we piked an affine open cover $\mathcal{U} = filed n X_i$
and set $\mathcal{V} = \mathcal{U}_{K_K} T = \{V_k\} = \{U_kX_kT\}$. We also the reduced
to the case $T = Spech$, so that $\{V_k\}$ is also an affine
open cover. $C := C^*(V, K)$. We had a commitation
diagram with each who complex:
 $0 \to P^0 \to P^1 \to P^2 \to \cdots \to P^* \to O$
 $\mathfrak{g}^0 \int \mathfrak{g}^1 \int \mathfrak{g}^0 f^2 \int \mathfrak{g}^0 \mathfrak{g}^0$
 $0 \to C^0 \to C^* \to C^*$ is a complex and have, for
area the tool \mathfrak{g} . $P^* \mathfrak{g}_{K} \mathcal{H} \to C^*\mathfrak{g}_{K}$

is a quism. Horace, since
$$H^{2}(C \otimes_{A} H) = H^{2}(\chi_{T}, \chi_{\otimes_{A}} H)$$
.
 $H M$, therefore $H^{2}(P \otimes_{A} H) \xrightarrow{\longrightarrow} H^{2}(\chi_{T}, \chi_{\otimes_{A}} H)$.
Let
 $\Theta = \operatorname{cohen} \left((P^{1})^{V} \xrightarrow{\pm} 5^{\circ} \rightarrow (P^{\circ})^{V} \right)$.
Then we argued that
 $H^{\circ}(\chi_{T}, \chi_{\otimes_{A}} H) \xrightarrow{\longrightarrow} H^{\circ}_{\operatorname{om}_{A}}(Q, M)$
 $\forall M \in Mod_{A}$.
This is to become the oracl requese
 $(P^{1})^{V} \xrightarrow{\pm} 5^{\circ} \rightarrow (P^{\circ})^{V} \longrightarrow Q \longrightarrow O$
gris, on applying the left ecast contranscant
functor $\operatorname{Hom}_{A}(-, H)$ to the above oracl acquesce, the
oracl sequence
 $(P_{1}, H) \xrightarrow{\pm} P^{\circ}_{\otimes_{A}} H \xrightarrow{\otimes} P^{\circ}_{\otimes_{A}} H$.
 $(\operatorname{Inice} \operatorname{Hom}_{A}(P^{\circ}, H) \longrightarrow P^{\circ}_{\otimes_{A}} H \xrightarrow{\otimes} P^{\circ}_{\otimes_{A}} H$.
 $(\operatorname{Inice} \operatorname{Hom}_{A}(P^{\circ}, H) = P_{\otimes_{A}} H$.
 $\operatorname{Hom}_{A}(Q, H) = H^{\circ}(P^{\circ}_{\otimes} H) = H^{\circ}(\chi_{T}, \chi_{\otimes_{A}} H)$.
Let $t \in T$. Solving $M = h(t)$ in the above, we get
 $\operatorname{Hom}_{A}(Q, h(h)) = H^{\circ}(\chi_{T}, \Lambda_{\otimes}_{A} h(h))$
 $= tl^{\circ}(\chi_{T}, \Lambda_{\otimes}_{A} h(h))$
 $= tl^{\circ}(\chi_{T}, \Lambda_{\otimes}_{A} h(h))$
 $= H^{\circ}(\chi, L_{h})$
 $\cong H^{\circ}(\chi, O_{\chi})$

Inice
$$L_{\xi} \simeq O_{\chi}$$
 by one hypetities.
This means
 $\dim_{\xi} \operatorname{Hom}_{A} (Q, k(k)) = \dim_{\xi} \operatorname{H}^{0}(\chi O_{\chi}) = 1.$
Now $k(k) = A_{M_{0}}$, $M_{0} = \operatorname{max}(k \operatorname{deal} d) \pm 67.$
Hence $\operatorname{Hom}_{A} (Q, k(k)) = \operatorname{Hom}_{A} (Q_{M_{0}Q}, k))$
 $= \operatorname{Hom}_{k} (Q/M_{0}Q, k)$
 $g = \operatorname{Hom}_{k} (Q, k)$
 $g = \operatorname{Hom}_{$

In pontrailar, we have a consider map $-p_{2}^{*}N^{*} = p_{2}^{*}p_{2}_{*}\mathcal{L} \longrightarrow \mathcal{L}$ as the adjoint to the identity map $p_{2,x} \downarrow \longrightarrow p_{2,x} \chi$. $\operatorname{Hom}\left(\begin{array}{c} \varphi_{2}^{*} \varphi_{2*} \chi, \chi\right) = \operatorname{Hom}\left(\begin{array}{c} \varphi_{2*} \chi, \varphi_{2*} \chi\right)$ In prostical time the map is ("of 7= Spec A) the usual map $H^{\circ}(X_{7}, X)\otimes_{A} \mathcal{O}_{X_{7}} \longrightarrow \mathcal{L}$. If me show that the map just defined $p_{2}^{*} \stackrel{\text{\tiny }}{\longrightarrow} \stackrel{\text{\tiny }}{\longrightarrow} \stackrel{\text{\tiny }}{\longleftarrow} (\stackrel{\text{\tiny }}{\cdots} \stackrel{\text{\tiny }}{\rightarrow} \stackrel{\text{\tiny }}{\longrightarrow} \stackrel{\text{\tiny }}{\longleftarrow} \stackrel{\text{\tiny }}{\longrightarrow} \stackrel{\text{ }}{\longrightarrow} \stackrel{\text{\tiny }}{\longrightarrow} \stackrel{\text{ }}{\longrightarrow} \stackrel{\text{ }}{\longrightarrow} \stackrel{\text{ }}}{\longrightarrow} \stackrel{\text{ }}{\longrightarrow} \stackrel{\text{ }}}{\longrightarrow} \stackrel{\text{ }}{\longrightarrow} \stackrel{\text{ }}}{\longrightarrow} \stackrel{\text{ }}{\longrightarrow} \stackrel{\text{ }}{\longrightarrow} \stackrel{\text{ }}{\longrightarrow} \stackrel{\text{ }}{\longrightarrow} \stackrel{\text{ }}{\rightarrow} \stackrel{\text{ }}}{\longrightarrow} \stackrel{\text{ }}{\rightarrow} \stackrel{\text{ }}{\rightarrow} \stackrel{\text{ }}{\rightarrow} \stackrel{\text{ }}{\rightarrow} \stackrel{\text{ }}{\rightarrow} \stackrel{\text{ }}{\rightarrow} \stackrel{\text{ }}}{\rightarrow} \stackrel{\text{ }}{\rightarrow} \stackrel{\text{ }}}{\rightarrow} \stackrel{\text{ }}}{\rightarrow} \stackrel{\text{ }}{\rightarrow} \stackrel{\text{ }}}{\rightarrow} \stackrel{\text{ }}}$ ie snijetting, we are done, for a snijetter map of line builtes is an inusplism. By Wakayame's lemma, it is enough to show that for XEXT, the map $(\underline{q}_{z}^{*} \mathcal{N}) \otimes \underline{b}_{x_{\tau}} (n) \longrightarrow \mathcal{L} \otimes_{\mathcal{O}_{\mathcal{K}_{\tau}}} b(n)$ is snigertine, let t= B(x) A little throught shows that Х the above is $\left(\psi_{z}^{*} \mathcal{N}^{+} \right) \Big| \underset{\chi_{x} \{t\}_{r}}{\otimes} \psi_{x}^{k} (x)$ X \longrightarrow Le $\otimes_{0}^{k(n)} = 0 \otimes_{x}^{k(n)}$ T Ł This anouls to showing that $H^{0}(X_{T}, \mathcal{L}) \otimes \mathbb{P}(\mathbb{Z}) \longrightarrow \mathbb{P}(\mathbb{Z})$ is sygentin.

brice Le is tired (by hypothesis), it has a readence
reaching sation
$$\sigma$$
, brice (**) in surjective there is a section
 $\vec{\sigma} \in [1]$ such that $\vec{\sigma} \mid_{X \times \{0\}} = L_{2}$. Gravidan the commitative
diagram (1). Since σ is nonshare variabling, one arrow effice open
subscheme U q XT, it is portrave variabling on UN($\{X \times \{0\}\}\)$
and generates the line budge Le on UN($\{X \times \{0\}\}\)$. Lince $\vec{\sigma} \mid_{U}$ maps
its $\sigma \mid_{UN(X \times \{0\})}$, it follows that the south-ceast pointing errors
in (t) is anigetime. It follows that the south-ceast pointing errors
in (t) is anigetime. It follows that $H^{\circ}(XT, \Sigma) \otimes_{A} \otimes_{X_{T}} \otimes_{M_{T}} \otimes_$

K is a field extermin q k. Lie & L XK - XL מ Spuk ---- Spuk By flat bare charge HO (XK, LK) = HO (X, L) & K. Home dring H° (K,L) = dring H° (XE,LE) = I. - Since From this it is easy to see L is trivial.