Suppose
$$T \subseteq Speck$$
 where T is a complete revisity
over k (and A is a f.g. k -algebra), with \subseteq being a
clocch immension. Then T is apprine, since all clocch antischemes
of an approxe achieve are apprine (they are all of the form
 $Spec(A/I)$ where T is an ideal of A). Hence
 $T = Spec(T(T, O_T))$. Now $T \longrightarrow Speck$ is a proper
map, and hence $T(T, O_T)$ is a fig. k -module, i.e.,
it is a finite k -module, i.e. a finite drive k -vector space.
Horeone $T(T, O_T)$ is an integral domain and hence
 $is a field. But $k = \overline{k}$, where $T(T, O_T) = k$. Hence
 $T = Spec(T(T, O_T)) = Speck$ is a point.$

Lemma: Suppose X is a complete b-vaniety and L a line
bundle on X. Then L is trivial if and only if
$$H^{0}(A_{3}L) \neq D$$

and $H^{0}(A, L^{-1}) \neq D$.
Proof: $4f \ L$ is trivial, then this is obvious.
Genvanly suppose $H^{0}(L)$ and $H^{0}(L^{-1})$ are non-zero.
Let $0 \neq \sigma \in H^{0}(L)$ and $O \neq c \in H^{0}(L^{-1})$.
Then σ can be identified with a map
 $O_{X} \xrightarrow{\sigma} L$
and τ with
 $L \xrightarrow{c} O_{X}$.
Let U be the open lows on which reither σ nor
 τ is zero. Consider the composite

 $\mathcal{O}_{\mathsf{x}} \xrightarrow{\sigma} \mathsf{L} \xrightarrow{\tau} \mathcal{O}_{\mathsf{x}}$ This composite does not voush on U, and heme is a non-zus element of Hom (Ox, Ox) = T(X, Ox) = k. Hune it is norshere vanishing and TOT is an is morphism. This means Z is sinjeture Nro Land Ox are line builles, whence t is an isomorphism.

Proportion : Suppose I is a line builde on XX, T with X complete, and T a k-schene. Let Lt := Z | XX [6] for tGT. Then the lows on T where Ly is free is a christ subset of T. Prof : By suni-continuity, the laws where dring HO(X, L)>D

is closed, as is the lows where dring H° (X, LE') 7 D. /

Poporition: Suppose T is an integral k-scheme and X a complete k-vaniety. Let Z be a line bundle on $X_{k}T$ and $L_{t} = Z \Big|_{X \times \{t\}}$. Suppose L_{t} is touvial for all teT. Then there exists a line bundle M on T such that $I = \varphi_{2}^{*}M$, where φ_{i}, φ_{2} are the projections from $X_{k}T$ to X and T respectively. <u>Remark</u>: The line bundle M on T is unique (up to isomorphism). This can be seen by picking a k-valuand point $x_{b} \in X$, and noting that $J = \varphi_{2}^{*}M = M$.

bitteret loss of generating we may assume T is apprind,
long T = Spee A. Pick an apprice open coner U = EUGY
SJ XX & T, and consider
$$C^{\circ} = \check{C}^{\circ}(U, d)$$
. We have
a natural isomorphism. $\check{H}^{\circ}(U, d) = \check{H}^{d}(X_{X}, T, d), i ? 0.$
Nor one, since $X_{X}T \longrightarrow T$ is proper, $\check{H}^{\circ}(X_{X}, T, d)$
is a finitely generated A-module for all \hat{r} . We can,
assume U is a finite coner, and here $\check{H}^{\circ}(X_{X}, T, d) = D$
for $i > n_{0}$ for some n_{0} .
Then besic homological algebra says that there
is comples of free modules, L° , $L^{m} = 0$ m ? no, and
a quasivier in morphism
 $d: L^{\circ} \longrightarrow C^{\circ}$
More one, since C° is flat one A, $\mathfrak{QO}_{A}M: L^{\circ}OM \rightarrow CO_{A}M$
is a quasivier $H^{2}(C^{\circ}O_{A}M) = H^{\circ}(X_{X}, T, X \otimes_{A}M)$
three $XO_{A}M$ is about hand for $X \otimes \mathfrak{p}^{\times} \widetilde{M}$.
Note that $H^{2}(C^{\circ}O_{A}M) = \widetilde{O} = (\widetilde{O}_{A}M)(U_{Y}, \dots, v_{p})$
 $= \bigoplus_{0 \leq i_{0} < \dots < i_{p}} \mathbb{I}(U_{i_{0}} \dots c_{p}) \otimes_{A}M.$
 $= C^{\circ}(U, T) \otimes_{A}M.$

From HW3, we can "truncate" L' to get a quan-iscomorphism $0 \longrightarrow k_{0} \longrightarrow k_{i} \longrightarrow \cdots \longrightarrow k_{n} \longrightarrow 0$ <u></u>[δο] Φ₁] Φ_νο $0 \longrightarrow C^{0} \longrightarrow C^{1} \longrightarrow \longrightarrow C^{n_{0}} \longrightarrow 0$ with KO a projecture A-module. Here $k^{i} = L^{i}$ for $i \geq 1$, and $k^{\circ} = ()$. Since t' is flat we have Hi (Q) : Hi (K @ M) ~ Hi (C @ M) = Hi (KK, T, Regy) + MGMADA