Lecture 6 Jan 26, 2021 we are working oner alg. closed field k. A is an abdian var. Last time we proved the following:

Theorem: Let f: A -> Y be a morphism of varieties with Y complete. For a CA let Fa be the connected component of f'fas containing a. Then with F = To we have Fa= a+F + a GA. However Fie a closed subgroup of A (i.e. F is a sub abelian variety of A).

<u>Remark:</u> F is often called the kind of the morphism f.

None, let D be an effective divisor, and L=O(D). We know that 2D is base point free, i.e. 12 is generaled by global sections. (I den: 2) = to D + to D for every a EA, and given a E A, we can find a E A such that $x \notin t_{a} \to U t_{a} \to D$. Let $V = H^{o}(A, L^{2})^{*}$. We have a natural map $A \xrightarrow{f} \mathbb{P}(V)$ Have sujection Ho (L2) Op OA ->> L2 $\stackrel{\text{ve}}{=} V^* \otimes_{\mathbb{B}} \mathbb{O}_{\mathbb{A}} \longrightarrow \mathbb{L}^2.$ to follows that if D* E (2D), Since map A IS P(V) Itress exists a ! hyperplane H* in P(U) and g* (O(1) ~ 12 and $H^{\circ}(L^{2}) = H^{\circ}(\mathbb{Q}(\mathbb{I}))$ such that f- (H*) = D* In particular, we have a hyperplane H in P(U) under that 2D = f - (H).

ht theoretically, 2D is the same as D. More
precisely (2D) red = Dred.
This means D (throught of in a naive way - ac
a set or as a reduced scheme) is the disjoint union
of fibres. In view of the theorem, set theoretically

$$D = \bigcup (a + F)$$

where F is the bennel of $d: A \longrightarrow P(V)$.
St follows that if $x \in F$ then $d_{x} = D = D$
(set theoretically).
Let
 $H(D) = \{x \in A \mid A_{x}^{*} D = D\}$
equility of rets, not
lines equivalence.
Then we have shown that
 $F \subseteq H(D)$
Note that if $a \in A$ is such that $D - a \neq D$, then
there exists an open neighbourhood U of a such that
 $D - u \neq D \forall u \in U$. It follows that $H(D)$ is
elocd. In fact since F is convected
 $F \subseteq H(D)$
The constitution of the theory of the identity.

Throw (M.V. Nov):
$$F = H(D)^{\circ} = F(L)^{\circ}$$
. (Pecall, we
are assuming $H^{\circ}(L) \neq 0$.)
Proof: We have already seen that $F \subset H(D)^{\circ}$. Clearly,
 $H(D)^{\circ} \subset F(L)^{\circ}$ (this is obvious, since $H(D)$ is clearly
actained in $F(L)$). It remains to show that
 $F(L)^{\circ} \subset F$.
Non9 $F(L) \subset F(L^{\circ})$. Hence $F(L)^{\circ} \subset F(L^{\circ})^{\circ}$.
We know that $L^{\circ} |_{F(C^{\circ})^{\circ}}$ is trivial. It follows that
 $L^{2} |_{F(L)^{\circ}}$ is trivial. Hence $f(F(L)^{\circ})$ is a point

(see notes on live buildes and divisors). Hence

$$E(L)^{\circ} \subset f^{-1}f(0)$$
. Since $O \in E(L)^{\circ}$, and since $E(L)^{\circ}$
is connected, int follows that $E(L)^{\circ} \subset F$.

buppone L as above (ie. H°(L)≠0) is ample. Then
for some n7l, L²ⁿ is very ample. 96 follows
that if
$$f: A \longrightarrow P(H^{\circ}(L^{2n})^{*})$$
 is the vesilting
mep, it is an embedding, whence, from the
theorem, $L \in L^{2n}$ is a point. Now $E(L)^{\circ} \subset E(L^{n})^{\circ}$.
bluce $E(L)^{\circ} = \{0\}_{2}$. This means $E(L)$ is first.
L ample, $H^{\circ}(L) \neq D \implies E(L)$ is first.
Converdy suppose $E(L)$ is first.
be as before, with $V = H^{\circ}(A, L^{2})^{*}$, and let F be
be the bernel of f . Drive $E(L)$ is first.
 $E(L)^{\circ} = \{0\}_{2}$, whence $F = \{0\}_{2}$. Norse F is the

connected component of
$$f^{-1}f(0)$$
 containing 0. Mos
 $f^{-1}f(0)$ is the disjoint union of $x + F$, $x \in f^{-1}f(0)$.
It follow that $f^{-1}f(0)$ is fillow from the properties of $f(0)$.
It follows that $f^{-1}f(0)$ is fillow from $f^{-1}f(0)$ is fillow the theorem of Nori, this mean $f^{-1}f(0)$ is fillow theorem of Nori, this mean $f^{-1}f(0)$ is fillow theorem of Nori, this mean $f^{-1}f(0)$ is a finite map $x \in A$.
Hence the map $-f: A \longrightarrow F(V)$
is a finite map $($ Bearsen: f is a proper map,
thise $A \xrightarrow{d} P(V) \longrightarrow Spech as proper. A proper generic finite map is firster (in Hentshore this is proved by naive Sterin fontownon)). This means L^2 is anyle (see argument below) and hence L is anyle.
To see L^2 is anyle (when $E(L)$ is private) pick a coherent O_A -module \exists . We have to down that $H^2(A, \exists G(L^2)^N) = O$ for $A = >0$. This is the so-called cohered oritrion for anylenes (see EH , $p:229$, $Prop. G:\overline{3}$]
Now $H^4(A, \exists G(L^2)^N) = H^4(A, \exists G \uparrow O(m))$
hence f is first, the is our applies map. Hence $H^4(B, \exists G \uparrow O(m))$
 $H^4(A, \exists G \uparrow O(m)) = H^4(P(V), f_*(\exists G \uparrow O(m)))$
 $H^{1}(A, \exists G \uparrow O(m)) = H^4(P(V), f_*(\exists G \uparrow O(m)))$
 $H^{1}(A, \exists G \uparrow O(m)) = H^4(P(V), f_* \exists G O(m))$
 $H^{1}(A, \exists G f^{*}O(m)) = H^4(P(V), f_* \exists G O(m))$$

(If A -> B is a map of ring, M E Moll B, NE ModA, Itren $M \otimes_{B} (B \otimes_{A} N) = M \otimes_{A} N.$ Now O(n) is very ample on P(V), and here H¹ (f* 4 ⊗ (O(m)) = 0 m>0, i≥1. // Here we have proved the following throven. Theorem: Let I be a line bundle on A such that H (A,L) = D. Then L is ample if and only if F(L) is frinte.