Lecture 3

For today's lecture we work over an alg. cloud field b. A variety, abelian variety, scheme etc will mean objecto one k.

Theorem: Let X and Y be complete varieties Z a connected scheme and it a line bundle on XXYX2 such that I retricted to {nojx YxZ, Xx {yoy xZ, XxYx {zoy is trivial for some xo ex, yo EY, 30 EZ. Then I is trivial. Proof: Later in the conne.

Proportion: Let X be a complete vari dy 2 an arbitrary variety. Let & be a line bundle on XXZ such that LIXXEST is trivial + zez. Then L = p2 M for some live bundle M on 2. Pron: Later.

Let A be an abelian vaniety. Let P1, P2, P3: AXAXA -> A be the three projections. Let mining: AXAXA -> A and $m: A \times A \times A \longrightarrow A$ be the maps Not a good notation $m=p_1 + p_2 + p_3.$ $M_{ij} = P_{i} + P_{j},$ m is usually reserved for milli ficitioni map.

Let
$$\mathcal{I}$$
 be a line bundle on A. Define
 $\mathcal{M} = m \cdot \mathcal{I} \otimes m \cdot \mathcal{I}^{-1} \otimes m \cdot \mathcal{I}^{-1} \otimes m \cdot \mathcal{I}^{-1} \otimes \mathfrak{I}^{*} \mathcal{I} \otimes \mathfrak{I} \otimes \mathfrak{I}$

herma: For 2, y E A and a line budle K on A, we have $t_{x+y} \stackrel{\mathcal{F}}{\leftarrow} \mathcal{L} \otimes \mathcal{L} = t_x \stackrel{\mathcal{F}}{\leftarrow} \mathcal{L} \otimes t_y \stackrel{\mathcal{F}}{\leftarrow} \mathcal{L}.$ Proof : In the corollary takes f = x, g = y, h= 1A. For Le Ric (A), define $\Phi_{x}(x) = b_{x}^{*} \mathcal{L} \otimes \mathcal{L}^{-1} \qquad \forall x \in A.$ It is easy to see that the LOL' is homgenous. Indeed, $ta^{*}(t_{n}^{*} L \otimes L^{-1}) = t_{a+1} L \otimes t_{a}^{*} L^{-1}$ = tant LOLAL'O to*E'. = tat to tyte to tat L = tit to 1 - , for all a eA. This shows, Lemme: of takes values in (J(A),) < will use additive notation There. Lenne : q x @ M = q + q M hoon: Left to you (Eary!) /

Proportion: Let
$$\chi'$$
 be a line bundle on $A \times S_{2}$ when
 S in variety. For $a \in S_{2}$, write L_{2} for $\mathcal{L}_{1}^{2} A \times f(a_{2})^{2}$
lupper $L_{20} \in \mathbb{J}(A)$ for some $20 \in S_{2}$. Then
 $L_{1} \in \mathbb{J}(A)$ for all $A \in S_{2}$.
Proof:
Consider the line bills M on $A \times A \times S_{2}$ given by
 $\mathcal{M} = (P_{1} + P_{2})^{2} \chi \otimes P_{1}^{2} L^{-1} \otimes P_{2}^{2} \chi^{-1}$.
be need the following lemme.
Lemma: Let $L \in \mathbb{J}(A)$. Let $P_{2}P_{2}$ be the populations
 $A \times A \longrightarrow A$ and $m : A \times A \longrightarrow A$ the group
operation. Then
 $m^{2}L \cong P_{1}^{2} L \otimes P_{2}^{2} L^{-1}$ on $A \times A$. It is
trivial on $A \times \{a\}^{2} \forall a \in A$. We are using
homogenisty here. More privally
 $m^{2} L \otimes P_{1}^{2} L^{1} \otimes P_{2}^{2} L^{-1} \left| A \times \{a\}^{2} = t_{a}^{2} L \otimes L^{-1}$
 $= O_{A}$ trives L
by an earlier lemma stated to day
 $m^{2} L \otimes P_{1}^{2} L^{1} \otimes P_{2}^{2} L^{-1} \cong P_{2}^{2} M$
for some line bundle M on A .
By symmetry, $m^{2} L \otimes P_{1}^{2} L^{-1} \otimes P_{2}^{2} L^{-1}$ is also

trivial, But this is the same as M. R* M AXA EVJXA Hence M is turial. Thus m[×] L@ p^{*}L⁻¹ @ p[×]L⁻¹ is troval. Have the lenne. Let us returns to the proof the Propr. We were considering M = m* 2 @ p* L-' @ p* 24 m AXAx S. From the lenna, wice Les is homogenous, Strene fire M AXAX Stor is trivial. On the alter hand it is durious that M EsyxAxS and M A O Colyxs are trivial. dene Mis trainal // Proportion: Lot D be an effectue divisor on an abelian variety A. Then 2D is base point free, $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}$

Proof: Let L= (O(D). We have try LOL= trLo tyt. Set y=-z. Cet $L^2 \cong t_{\mathbf{x}}^* L \otimes t_{-\mathbf{x}} L$ So $2D = t_{y}^{*} D + t_{-x}^{*} D$ (here $t_{x}^{\star} D := x + D$ $t_{x}^{\star} D = -x + D$ Grin a point a E A we can find a such that af tx*D and t-x D. This proves the lema. // Suppose L= Q(D) where D is an effective divisor we have have map H° (O(2D)) B O $A \xrightarrow{f} \mathbb{P}^{n}$ $\longrightarrow O(2D)$ such that $f^* O(1) \simeq L^2 = O(2D)$ This is surjective Since 12D1 is bare- pt free. Inice 12D1 is b-p free.