Ir today lecture we work over an alg. closed field k. A vanity, abelian vanity, scheme etc will mean objects over k.

Theoran: Let X and y be complete varieties, Z a cornuted selvene and \mathcal{L} a line bundle on $X \times Y \times 2$ such brat 1 rotucted to $\left\{x_{0}\right\} \times Y \times z, x \times\left\{y_{0}\right\} \times Z, x \times y \times\left\{z_{0}\right\}$ is trivial for some $x_{0} \in X, y_{0} \in Y, z_{0} \in Z$. Then $\mathcal{1}$ is trivial.
Prof: Later in the cone.

Proportion: Let x be a complete rani thy 2 an arbitivaly variety. Lit 1 be a line bundle on $X \times 2$ such that $\left.\mathcal{L}\right|_{x \times\{z\}}$ is trivial $\forall z \in 2$. Then $\mathcal{L}=p_{2}^{*} M$ for some live bundle μ on 2 .
Pron: Later.

Let A be an abelion variety. Let $p_{1}, p_{2}, P_{3}: A \times A \times A \longrightarrow A$ be the three projections. Let

$$
m_{i j}: A \times A \times A \longrightarrow A \text { and } m: A \times A \times A \longrightarrow A
$$

be the maps

$$
m_{i j}=p_{i}+p_{j}, \quad m=p_{1}+p_{2}+p_{3}
$$

Let \mathcal{L} be a line bundle on A. Difure

$$
\mathcal{M}=m_{i}^{*} \mathcal{L} \otimes m_{12}^{*} \mathcal{L}^{-1} \otimes m_{13}^{*} \mathcal{L}^{-1} \otimes m_{23}^{*} \mathcal{L}^{-1} \otimes p_{1}^{*} \mathcal{L} \otimes p_{2}^{*} \mathcal{L} \otimes p_{3}^{*} \mathcal{L}
$$

Cain: μ is trivial.
포: Enough to show $\left.\mu\right|_{\{0\} \times A \times A},\left.M\right|_{A \times\{0\} \times A},\left.\mu\right|_{A \times A \times\{0\}}$
are trial. By symmenty, it is enough to check that $\left.M\right|_{\left\{0 \int_{X A} \times A\right.}$ is trivial.

Let $2=\{0\} \times A \times A$.

$$
\begin{aligned}
& \left.m * \mathcal{L}\right|_{2}=\left.\left(p_{2}+p_{3}\right)^{*} \mathcal{L}\right|_{2}=\left.m_{23}^{*} \mathcal{L}\right|_{2} \\
& \left.m_{12}^{*} \mathcal{L}\right|_{2}=\left.p_{2}^{*} \mathcal{L}\right|_{2} \\
& \left.m_{13}^{*} \mathcal{L}\right|_{2}=p_{3}^{*} \mathcal{L} l_{2}
\end{aligned}
$$

From this it is clear that $\left.\mu\right|_{2}$ is trivial.

Remark: Let $\mathcal{L}_{0}=$ fibre of \mathcal{L} over $O \in A$. There is a canonical isomorphism,

$$
\mathcal{M} \sim \mathcal{L}_{0} \otimes_{k} \Theta_{A \times A \times A}
$$

$\pi^{*} 1_{0}$ where $\pi: A^{3} \longrightarrow$ Speck is the sturctuve map.
Proportion: \mathcal{M} is trivial on $A \times A \times A$.

Corollary: Lit x be a variety, f, g, h maps from x to
A. Then

$$
(f+g+h)^{*} \mathcal{L}=(f+g)^{*} \mathcal{L} \otimes(f+h)^{*} \mathcal{L} \otimes(g+h)^{*} \mathcal{L} \otimes f^{*} L^{-1} \otimes g^{*} \alpha^{-1} g h^{*} \alpha^{-1} .
$$

Proof: Pull bank M using the map

$$
(f, g, h): X \longrightarrow A \times A \times A \text {. q.e.d. }
$$

Notations and dyfintions: Let A be an abclion variety.
For $a \in A$, difuie

$$
\begin{aligned}
t_{a} & : A \\
\text { by } \quad x & \longmapsto a+x .
\end{aligned}
$$

A line beadle \mathcal{L} on A is called homoghons if

$$
t_{a}^{*} \mathcal{L} \simeq \mathcal{L}
$$

$$
\forall a \in A \text {. }
$$

Cleanly isomorphism classes of hounogenous line bundles pan a group under *).
$\operatorname{Pic}(A)=$ isounorplisin classes of line bundles on A Pic ${ }^{\circ}(A)=$ isomorphinin classes of live bender on A alg. equivalent to the tinvial him, ie. $[f] \in P_{i c}{ }^{0}(A) \Leftrightarrow \exists$ connected finite type selene S and a line bale \mathcal{I} on Ass and two points $s_{1}, s_{2} \in S$ with $\left.\tilde{\mathcal{L}}\right|_{A \times\{s,\}} \cong C_{A}$ and $\left.\tilde{\mathcal{L}}\right|_{A \times\left\{i_{2}\right\}} \approx \mathcal{L}$.
$J(A)=$ ivomaplusin classes of homog. bundles

Lemma: Fr $x, y \in A$ and a line bundle \mathcal{A} on A, tue have

$$
t_{x+y}^{*} \mathcal{L} \otimes \mathcal{L}=t_{x}^{*} \mathcal{L} \otimes t_{y}^{*} \mathcal{L} .
$$

Proof:
In the corollary take $f \equiv x, g \equiv y, h=1_{A}$.

For $\mathcal{L} \in \operatorname{lic}(A)$, define

$$
\phi_{y}(x)=t_{x}^{*} \mathcal{L} \otimes \mathcal{L}^{-1} \quad \forall x \in A .
$$

It is easy to see that $t_{x}^{*} \mathcal{L} \otimes \mathcal{L}^{-1}$ is homuquous.
Indeed,

$$
\begin{aligned}
t_{a}^{*}\left(t_{x}^{*} L \otimes \mathcal{L}^{-1}\right) & =t_{a+x}^{*} \mathcal{L} \otimes t_{a}^{*} \mathcal{L}^{-1} \\
& =t_{a+x^{*}} \mathcal{L} \otimes \mathcal{L} \otimes \mathcal{L}^{-1} \otimes t_{a}^{*} \mathcal{L}^{-1} \\
& =t_{a}^{*} \mathcal{L} \otimes t_{x}^{*} \mathcal{L} \otimes \mathcal{L}^{-1} \otimes t_{a}^{*} \mathcal{L}^{-1} \\
& =t_{x}^{*} \mathcal{L} \otimes \mathcal{L}^{-1},
\end{aligned}
$$

fer all $a \in \mathcal{A}$. This shows,
Lemur: ϕ_{L} takes values in $J(A)$. \leftarrow will use additive

Leman : $\quad \varphi_{\text {Lb } \mu}=\varphi_{L}+\varphi_{\mu}$

Proof: Left to yon (Ear!!)

Proportion: Let \mathcal{L} be a line bundle on $A \times S$, where S is variety. For se S, write L s fer $\left.\mathcal{L}\right|_{A \times\{s\}}$. suppress $L s_{0} \in J(A)$ for some so $\in S$. Then $L_{\perp} \in J(A)$ for all $s \in S$.
Prof:
Consider the line bole μ on $A \times A \times S$ given by

$$
\mu=\left(p_{1}+p_{2}\right)^{*} \mathcal{L} \otimes p_{1}^{*} \mathcal{L}^{-1} \otimes p_{2}^{*} \mathcal{L}^{-1} .
$$

We need the following lemma.
Lemma: Lit $L \in J(A)$. Let $p_{1,}, p_{2}$ be the pojechoñs $A \times A \longrightarrow A$ and $m: A \times A \longrightarrow A$ the group opratoros. Then

$$
m^{*} L \cong p_{1}^{*} L \otimes p_{2}^{*} L
$$

Prof:
Consider $m^{*} L \otimes p_{1}^{*} L^{-1} \otimes p_{2}^{*} L^{-1}$ on $A \times A$. It is trivial on $A \times\{a\} \quad \forall a \in A$. We are woing homogeniety here. More punsily

$$
\begin{aligned}
\left.m^{*} L_{\otimes} \otimes p_{1}^{*} L^{-1} \otimes p_{2}^{*} L^{-1}\right|_{A \times\{a\}} & t_{a}^{*} L \otimes L^{-1} \otimes \Theta_{A} \\
& =t_{a}^{*} L \otimes L^{-1} \\
& =\theta_{A} \text { shinier } L
\end{aligned}
$$

By an earlier leman stated today

$$
m^{*} L \otimes p_{1}^{*} L^{-1} \otimes p_{2}^{*} L^{-1} \simeq p_{2}^{*} M
$$

fer some hire bundle $M M A$.
By sypuntry, $\left.m^{*} L \otimes p_{1}^{*} L^{-1} \otimes p_{2}^{*} L^{-1}\right|_{\{0\} \times A}$ is also
trivial. But this is the same as M.

Hence M is trial. Thus

$$
m^{*} L \otimes p_{1}^{*} L^{-1} \otimes p_{2}^{*} L^{-1}
$$

io tincal. Hame the leman.
Let no retire to the proof the Prop.
we were considering

$$
\mathcal{M}=m^{*} \mathcal{L} \otimes p_{1}^{*} \mathcal{L}^{-1} \otimes p_{2}^{*} \mathcal{L}^{-1}
$$

on $A \times A \times S$.
From the lemma, shice $L_{s_{0}}$ is homogenom, therefore $\left.M\right|_{A \times A \times\left\{s_{0}\right\}}$ in trial. On the
often Land it is obvious that $\left.M\right|_{\text {\{o }\} \times A \times S}$ and $\left.M\right|_{A \otimes\{0\} \times S}$ are trial.
dene M is trinal

Proportion: LA D be an effenture divisor on an abclian variety A. Then 2D is base point free, life. $\quad D^{\prime} \in|2 D|-D^{\prime}=\phi$.

Prof: Let $L=C(D)$. We have

$$
t_{x+y}^{*} L \otimes L \cong t_{x}^{*} L \otimes t_{y}^{*} L
$$

set $y=-x$. Get

$$
\text { So } \quad \begin{aligned}
& L^{2} \cong t x^{*} L \otimes t_{-x}^{*} L . \\
& 2 D \equiv t_{x}^{*} D+t-x D \\
& \text { (here } t_{x}^{*} D:=x+D \\
& t_{-x}^{*} D=-x+D
\end{aligned}
$$

Given a point $a \in A$ we can find x such that $a \notin t_{x}^{*} D$ and $t-x^{*} D$. This proves the lemma.

Suppose $L=Q(D)$ where D is an effective divisor. We have have map $\mid H^{\circ}(\theta(2 D)) \otimes_{k} \theta_{A}$

$$
A \xrightarrow{f} \mathbb{P}^{N}
$$

such that $f^{*} O(1) \simeq L^{2}=O(2 D)$	This is sunjelhe
since $\|2 D\|$ is bare-pt free.	since $\|2 D\|$ is bop free.

