k alg. closed field; A an ab. var $/ k, \operatorname{din} A=g$.
Let Θ be an ample bundle on A and on $A \times A$ and set $\Lambda=\Lambda(\Theta)$ to be

$$
n(\Theta)=m^{*}(\Theta) \otimes p_{1}^{*}(\Theta)^{-1} \otimes p_{2}^{*}(\Theta)^{-1} .
$$

$K(0):=$ axil sulschame of A oven while $\cap(L)$ is trivial.
$K(\otimes)$ is a finite subgroup scherne of A.
Set $\quad \hat{A}=A / K(\Theta)$.
we know

$$
\begin{aligned}
A(k) / k(\theta)(k) & \sim J(A) \quad \text { in } \phi_{\odot} \\
& a \longmapsto t_{0}^{*} \oplus \otimes \theta^{-1} .
\end{aligned}
$$

Easy to see that the action of $K(\theta) \times\{0\}$ on $A \times A$ lifts to an actins of $K(\Theta)$ on A. There fere A descends to a line bundle P on $\hat{A} \times A=\frac{A \times A}{E(\Theta) \times\{0\}}$. We point ont that

$$
\left.P\right|_{\hat{A} \times\{0\}}=\theta_{\hat{A}} \text { and }\left.P\right|_{\{0\} \times A}=\theta_{A}
$$

thane

Let S be a k-scherve and L a line bundle on $S \times A$ such that $\left.L\right|_{s \times\{0\}}$ is trivial, and st. $L_{\{s\} \times A}$ is in $P_{i c}{ }^{\circ}(A)$ fer some. Assume funttier that S is convected.

On $S_{x} \hat{A} \times A$ deprive

$$
M=p_{23}^{*} P \otimes p_{13}^{*}(L)^{-1} \text {. }
$$

Let
$\Gamma_{s}=$ max'l subscheme of $S \times \hat{A}$ on which M is trivial.

Let $\pi: \Gamma_{3} \longrightarrow S$ be the composite

$$
\Gamma_{S} \subseteq \delta \times \hat{A} \xrightarrow{P_{1}} S
$$

(Note, if π is an iso, have $\phi: S \longrightarrow \hat{A}$, vainly the compointe $\left.S \xrightarrow{\pi^{-1}} T_{S} \subseteq S \times \hat{A} \xrightarrow{P_{2}} \hat{A}\right)$. we wish to show π is an issurorphism.
we point ont that if $u: S^{\prime} \longrightarrow S$ is a map, then $(u \times 1)^{-1}\left(\Gamma_{s}\right)=$ axil coat subulveres of $s^{\prime} \times \hat{A}$ ounwhile $(u \times 1)^{*} M$ is a trivial fundy. in shore pm

$$
p_{23}^{*} p \otimes p_{13}^{*} L^{-1}
$$

$$
\Gamma_{s^{\prime}}=(u \times 1)^{-1} \Gamma_{s}
$$

Therefore if $s \in S$ is a clucil point, then worth $S^{\prime}=S_{p u} k(s)=\{s\}$, we see that $\Gamma_{s^{\prime}}$ is the set of points $(s, \hat{a}) \in\{s\} \times \hat{A}=\hat{A}$ oven which M is trivial. It is not hand to see luteal $\Gamma_{S^{\prime}}$ in this care is a reduced, warily the point (s, \hat{a}) such that $\left.P\right|_{\{\hat{a}\}_{\}} A}$ is the line bundle $\left.L\right|_{\text {\{sfract }}$.

This shows, by Nakayama, that the nativival $\operatorname{map} \hat{O}_{\Gamma_{S}} \otimes k(s, \hat{a}) \longleftarrow \theta_{S, s}$ is sunjutive.

Case 1: Assume $S=S$ pee B where $\operatorname{dinin}_{k} B<\infty$, ie., B is an actin local ring. Let s be the only point in S, so that $B=Q_{S, s}$. We also assume WLDC

$$
\left.L\right|_{\{\Delta\} \times A}=O_{A} .
$$

As we cranial above, if $S^{\prime}=\{s\}$, then
$\Gamma_{S^{\prime}}$ is the loins in $\{s\} \times \hat{A} \times \hat{A}=\hat{A} \times A$ on which $\left.M\right|_{\{\Omega\} \times \hat{A} \times A}$ is trivial. Note $\left.M\right|_{\{\Omega>x \hat{A} \times A}=p_{B}^{*}\left(L_{\varepsilon_{\Omega y \times A}}\right)^{-1}$ (x) P.
lie. $\left.\quad M\right|_{\{-\beta \times \hat{A} \times A}=P \otimes O_{A}=P$.
Suin, by consturction of \hat{A} and P, the only point in A s.t. $\left.P\right|_{\hat{A} \times\{a\}}$ is turial is $O \in \hat{A}$, therepore $\Gamma_{S^{\prime}}=\{s\} \times\{0\} \in S \times \hat{A}$, lie $\Gamma_{S^{\prime}}=\{(s, 0)\}$. This means Γ_{s} is supputal in $(s, 0)$, i.e. it is a thichening of Γ_{S}.

$$
\{\Omega_{j \times \hat{A}}=S^{\prime} \times \hat{A} \longrightarrow \overbrace{s}^{\Gamma_{s}} \longrightarrow S_{s \times A}
$$

Thus Γ_{S} is an affine scherne, and the nat'l menf $B \longrightarrow H^{\circ}\left(\Gamma_{S}, O_{\Gamma_{s}}\right)$, on linssing oven B with $k(x)$ is an isomoplism. So by Nakenyama $B \longrightarrow H^{0}\left(\Gamma_{s}, O_{F_{s}}\right)$ is sungecture.

Comiter

$$
R_{P_{13, *}}^{i} M=R_{P_{13, *}}^{i}\left(f_{22}^{*} P\right) \otimes L^{-1} \text { (Mij. formin) }
$$

The lous in SXA over whilh M is trmal is finte for the following reason.
$p_{23}{ }^{*}(\lambda)$

$$
S \times A \times A \xrightarrow{P_{B}} S \times A
$$

$$
{ }^{1 \times p \times 1} \downarrow
$$

$P_{23}^{*}(P) \quad S_{\times} \widetilde{A} \times A \longrightarrow S_{13} \longrightarrow A \quad(s, a)$

$$
\left.M\right|_{P_{13}^{-1}(s a)}=\left.P\right|_{\hat{A} \times\{a\}}
$$

So $\left.\quad P_{23}{ }^{*}(\Lambda)\right|_{P_{3}^{-1}(\rightarrow a)}=$ ins. iniaqe of $\left.P\right|_{\hat{A} \times\{a\}}$

$$
\begin{aligned}
& \text { on } A \times\{a\} \text {. } \\
= & t_{a}^{*} \otimes \otimes \otimes \oplus^{-1} .
\end{aligned}
$$

So if $\left.M\right|_{P_{13}^{-1}(s, a)}$ is trival, then $\operatorname{ta}^{*} \theta \otimes \theta^{-1}$ is trmal. This mans $a \in K(\otimes)$ whilh is finito.
Condurion: The lous in SXA oven which M is trivial is ontomine in $K(\otimes)$ and heme is finte. Let wa urite 2 for thrs louns.

If $(s, a) \notin Z$, then it follons that $\left.M\right|_{\{\Omega\} \times \hat{A} \times\{a\}}$ is a won-trvial line buntle on \hat{A}.

Mrrones, when $a=0, \quad M_{\{\delta y \times \hat{A} \times\{0\}}=\theta_{\hat{A}}$, heme all
menters in the fainly A l.b.'s on \hat{A} repreantad by M are in $P_{i c}{ }^{0}(\hat{A})$.
S. it follows that of $(B, a) \& Z$, then

$$
\left.H^{\lambda}(\{s\} \times \hat{A} \times\{a\}, M\}_{\{\delta\} \times \hat{A} \times\{0\}\}}\right)=0 \quad \forall i .
$$

This means

$$
R^{i} P_{3, *} M
$$

is suppinted on $2 \forall i$. Sini 2 is finte, thenfore

$$
H^{q}\left(S \times A, R^{i} P_{i s, x}, M\right)=0 \text { for } q \geqslant 1 \text {. }
$$

Aleme by the levaly spentur seqquene:

$$
H^{i}(S \times \hat{A} \times A, M) \stackrel{d}{\simeq} \Gamma\left(S \times A, R^{i} R_{3, x} M\right) \text {. }
$$

Ho, since $L l_{2}$ is tinal (all line bundes on finte shenes are trivial), thenpme

$$
R_{R_{33} \times M}=R_{P_{13 \times}}^{k_{3}^{*}} P \otimes L^{-1} \simeq R^{i} P_{13 * *} P_{22}^{*} P .
$$

The same angment as above then shous:

$$
\begin{aligned}
H^{i}(S \times \hat{A} \times A, M) & \simeq H^{i}\left(S \times \hat{A} \times A, P_{2 s}^{*} P\right) \\
& =B \otimes_{k} H i(\hat{A} \times A, P)
\end{aligned}
$$

by flat bave change.
In putcocular $H^{i}(S \times \hat{A} \times A, M)$ is free $f \cdot g$. B-module. Noo counter $R^{i} P_{12, *} M$.

Coniden

Again M is a fanily of $l . b$'s which ore aly. trivial i.e. $\left.\left.M\right|_{\{(\Delta, \hat{a})}\right\} \times A$ is in $P_{i c}{ }^{0}(A)$. There is mly point in \hat{A} s.t. $\left.P\right|_{\{a\} \times A}$ is tuvial \& then is $\hat{a}=0$. Herue
$R^{i} P_{12, x} M$ is ouppuitul on $(\Delta, 0) \in S_{x} \hat{A}$, and heune aywning as are lid befre,

$$
H^{i}(S \times \hat{A} \times A, M) \sim\left(R^{i} P_{12, *} M\right)_{(s, 0)} .
$$

Let $R=\theta_{\hat{A}, 0}, \quad C=\theta_{S \times \hat{A},(\Delta, 0)}=B \otimes_{R} R$.
Notalions: $\quad \hat{A}_{0}=$ SquR

$$
S_{\text {PuC }}=S_{x} \widehat{A_{0}}
$$

Comider the cootrendiear complax fer the pull bout of M to $3 \times \hat{A}_{0} \times A$ on C. We have a compless of free C - module

$$
\begin{aligned}
0 \rightarrow F^{0} \longrightarrow F^{\prime} & \longrightarrow \cdots F^{g} \longrightarrow 0 \\
H^{i}\left(F^{0}\right) & =H^{i}\left(S \times \hat{A}_{0} \times A, M\right) \\
& =H^{i}(S \times \hat{A} \times A, M) \\
& =\left(R^{i} P_{12, \times} M\right)(S, 0)
\end{aligned}
$$

Sinis $R^{i} P_{12} * M$ is suppurtul at $\{(s, 0)\}$, thenfer it is artunan as a C-unodule,

Hem $H^{i}\left(F^{\circ}\right)$ are artiñan C-undues

$$
\left.C=B \otimes_{k} R \quad\right\} \begin{aligned}
& \text { finte as module } \\
& \uparrow
\end{aligned}
$$

R suie $k \rightarrow B$ is frint.

So $H^{\delta}(F)$ are antivion R - modules.
By what we pound last line, it follows thant
$H^{i}\left(F^{*}\right)=0$ for $i<g$.
Mreoones, if $N=H^{g}\left(F^{\circ}\right)$ then

$$
\begin{aligned}
N=H^{g}(S \times \hat{A} \times A, M) & \simeq B \Theta_{\hat{k}} H^{g}(\hat{A} \times A, P) \\
& \text { true fig. B-meduile }
\end{aligned}
$$

We have an exact sig.

$$
0 \rightarrow F^{0} \rightarrow F^{\prime} \rightarrow \ldots \rightarrow F^{g} \longrightarrow N \rightarrow 0
$$

Recall the module $\mathbb{Q}=\operatorname{coth}\left(\stackrel{N}{F}^{\prime} \rightarrow \tilde{F}_{0}\right)$.
Sine C is a local sing, we obundued, $Q \cong C / J$ for some ideal J and

$$
\Gamma_{s}=\operatorname{spe}(c / J)
$$

Let $Q^{-i}=\operatorname{Han} C\left(F^{i}, C\right)=\mathscr{F}^{i}$.
thane couple

$$
O Q^{-q} \rightarrow Q^{-g+1} \longrightarrow \ldots \rightarrow Q^{0} \longrightarrow 0
$$

Note $\quad H^{-i}\left(Q^{\prime}\right)=\operatorname{Ext} \mathrm{g}_{\mathrm{C}}^{-i}(N, C)$.
Deme the cohomalgis of Q^{\prime} are artivian '
So by carlin result

$$
H^{-i}(Q \cdot)=0 \quad-g \leqslant-i<0 .
$$

and by contrichor

$$
H^{D}\left(Q^{\bullet}\right)=Q
$$

Heme we have exart seq

$$
\begin{aligned}
0 \rightarrow Q^{-g} \rightarrow \cdots \rightarrow Q^{0} \rightarrow Q & \rightarrow 0 . \\
& n / 5 .
\end{aligned}
$$

Thus, by dualising yet agenin,

$$
N=H^{\theta}\left(F^{\prime}\right)=E_{x t_{c}^{g}}(c / g, C)
$$

This means $J N=0$.
On the etter hand N is a free B-unctule.

smin $J N=0$, this anouts to sayniy

$$
J \cap(B \otimes 1)=0
$$

blume

$$
B \longrightarrow C_{J}=H^{\circ}\left(\Gamma_{S}, O_{\Gamma_{S}}\right) \text {. }
$$

is injeriño.
Thn $\pi: \Gamma_{S} \longrightarrow S$ is an isomonplion.

