k alg. closed field; A an ab. var /k, dim A=g. Let @ be an angle bundle on A and on AxA and set $\Lambda = \Lambda(\textcircled{a})$ to be $\mathsf{N}(\mathfrak{G}) = \mathsf{M}^{*}(\mathfrak{G}) \otimes \mathfrak{g}^{*}(\mathfrak{G})^{-1} \otimes \mathfrak{g}^{*}(\mathfrak{G})^{-1}.$ K(@) := max'l subchance of A over while A(L) is trivial K(0) is a finite subgroup whene of A. Set $\hat{A} = A/k(\Theta)$. we know $\frac{A(k)}{k(0)(k)} \xrightarrow{\sim} J(A) \quad \text{we } \varphi_{\mathbb{S}} \\ \xrightarrow{\sim} k_{\mathbb{S}} \otimes \mathfrak{S}^{-1}.$ Easy to see that the artis of K(0) x foly on A XA lifts to an artim of K(O) on N. Therefore N descends to a line bundle P on Â×A = A×A E(@)×{{}} we point out that P/ AxSoy = Of and P/ SoyxA = OA Home $\mathcal{A}^{*}(i_{xq}) = \Lambda \quad A_{X}A$ Α **]**4 Pxl ÂxA P

Lot S be a k-scheme and L a line budle
on SXA such that
$$L|_{SXGOY}$$
 is trivial, and et.
 $L|_{SYXA}$ is in Pic^o (A) for some s. Assume further
that S is connected.
On SXÂXA define
 $M = p_{23}^* P \otimes p_3^* (L)^{-1}$.

Let Ty = max'l subscheme of SxA on which M is trivial. Let T: T's ____ S be the composite $\Gamma_{S} \subseteq S \times \hat{A} \xrightarrow{R} S.$ (Note, if to is an iso, have $\phi: S \longrightarrow \hat{A}$, noundly the composite $S \xrightarrow{T_1} T_S \subseteq S \times \hat{A} \xrightarrow{P_2} \hat{A}$). We wish to show T is an isomer phism.

he point out that if
$$u: S' \longrightarrow S$$
 is a map,
then $(U \times I)^{-1} (T_{5}) = nearch channed subsubscript of S' $\times h$
on which $(U \times I)^{\times} H$ is a trivial family.
ein Short from $P_{2k}^{*}P \otimes P_{1k}^{*} t^{-1}$.
 $T_{5'} = (U \times I)^{+} T_{5}$.
Therefore if $g \in S$ is a cloud point, there with
 $S' = Spec k(s) = f_{2} \cdot f_{5}$, we see that $T_{5'}$ is the cd
 f_{1} points $(s, \hat{a}) \in f_{2} \cdot f_{3} \times \hat{a} = \hat{A}$ over which
 M is trivial. It is not hand to are thick
 $T_{5'}$ is this case is a reduced, normally the
print (s, \hat{a}) such that $P|_{15} \cdot f_{5} \times h$ of the build
 $L|_{12} \cdot f_{5} \times A$.
This shows by Nakayana, that the national
map $O_{T_{5}} \otimes k(s, \hat{a}) \in O_{5,8}$ is surjective.
 $\frac{Gach}{1}$: Assume $S = Spec B$ value during $B = \infty 0$, if e ,
 B is an outer local ring. Let s be the only point
in S , so that $B = O_{5,6}$. We also assume WLOC
 $L|_{12} = O_{A}$.
As we drowed above, if $S' = f_{15}$, then
 $T_{5'}$ is the locus in $f_{2} \cdot f_{2} \cdot \hat{A} \times A = A \times A$ on collich
 $M|_{13} \cdot f_{2} \times K \times A$ is trivial. Note $M|_{13} \cdot f_{2} \cdot f_{2} \cdot f_{3} = 4e^{-1} (L|_{12} \cdot f_{2} \cdot f_{3})$.$

⊗ P.

i.e.
$$M|_{f,f_{2}\times\hat{A}\times\hat{A}} = \mathcal{P}(\mathcal{B}) \otimes \mathcal{O}_{A} = \mathcal{P}$$
.
Inic, by experimention \mathcal{A} \hat{A} and \mathcal{P} , the only
point in A s.t. $\mathcal{P}|_{\hat{B}\times\hat{G}\hat{Y}}$ is trivial is $\mathcal{O}\in\hat{A}$,
therefore $\Gamma_{g'} = \{\mathcal{A}_{Y}\times\hat{G}\} \in S\times\hat{A}$, i.e. $\Gamma_{g'} = \{(\mathcal{A}, \mathcal{O}), \mathcal{P}\}$.
This means Γ_{g} is supported in (9,0), i.e. \mathcal{X} is
a thickning of $\Gamma_{g'}$.
 $\Gamma_{g'} \longrightarrow \Gamma_{g}$
 $\int \mathcal{D}$
 $f\mathcal{A}_{Y}\times\hat{A} = S'\times\hat{A} \longrightarrow S_{X}A$
 $\downarrow \qquad \mathcal{D}$
 $f\mathcal{A}_{Y}\times\hat{A} = S'\times\hat{A} \longrightarrow S_{X}A$
 $\downarrow \qquad \mathcal{D}$
 $f_{g} = \mathcal{D}$
 \mathcal{A}_{g} .
 $\mathcal{A}_{g} = (\mathcal{A}, \mathcal{O}_{g})$, on theoring over \mathcal{B} with $\mathcal{A}(\mathcal{A})$
is an isomorphism. So by Nakayama
 $\mathcal{B} \longrightarrow H^{\circ}(\Gamma_{g}, \mathcal{O}_{g})$ is supported.

Grivien

$$P_{P_{Q,Y}}^{i} M = P_{P_{Q,Y}}^{i} (P_{Q,Y}^{*}P) \otimes L^{-1} (p_{Q}, p_{mult})$$

The torus in SxA one which prior trinnel
is finite for the following reason.
 $t_{25}^{*}(h)$ SxA xA $\xrightarrow{P_{2}}$ SxA
 $t_{2} \times h$ $\xrightarrow{P_{3}}$ SxA
 $t_{2} \times h$ $\xrightarrow{P_{3}}$ $\xrightarrow{P$

number in the family of the's on
$$\hat{A}$$
 requested by M
are in $Pic^{0}(\hat{A})$.
S it follows that of $(\delta, a) \notin Z$, then
 $H^{d}(fill_{X}\hat{A} \times fall_{0}, M)_{fill_{X}\hat{A} \times fall_{0}}) = 0$ $H t$.
This means
 $P^{d} R_{S,x} M$
is supported on Z $H \hat{L}$. Sum Z is finite,
therefore
 $H^{\delta}(SxA, P^{\lambda} R_{S,x} M) = 0$ for $g \geq 1$.
therefore
 $H^{\delta}(SxA, R^{\lambda} R_{S,x} M) = 0$ for $g \geq 1$.
blue by the linear sophial sequence;
 $H^{\delta}(SxA, A, N) \cong T(SxA, P^{\lambda} R_{S,x} M)$.
blue by the linear sophial sequence;
 $H^{\delta}(SxA \times A, N) \cong T(SxA, P^{\lambda} R_{S,x} M)$.
blue on finite shares are travial, therefore
 $P^{\lambda} R_{S,x} M = P^{\lambda} R_{S,x}^{b} P \otimes L^{-1} \cong P^{\lambda} R_{S,x} R_{S}^{b} P$.
The same argument as above then shows:
 $H^{\lambda}(SxA \times A, M) \cong H^{\lambda}(SxA \times A, R_{S}^{b} P)$
 $= B \otimes_{\mathbb{R}} H^{\lambda}(A \times A, R)$ by first base they.
So pertucator $H^{\lambda}(SxA \times A, M)$ is force f.g. B-module.
No consider $P^{\lambda} R_{Z,x} M$.

Coni des

We have an total sig.

$$0 \rightarrow F^{0} \rightarrow F^{1} \rightarrow \cdots \rightarrow F^{1} \rightarrow N \rightarrow D$$

leval the module $Q = \operatorname{cohn}(F^{1} \rightarrow F^{0})$.
this C is a local ring, we obundued,
 $Q = C/J$ for some ideal J and
 $\Gamma_{J} = \operatorname{Spe}(C/J)$.
 $S \times \hat{A}_{0} \longrightarrow S \times \hat{A}$
Let $Q^{-i} = \operatorname{Hom}_{C}(F^{i}, C) = F^{i}$.
Have comple
 $c \rightarrow Q^{-1} \rightarrow Q^{-Q^{+1}} \rightarrow \cdots \rightarrow Q^{0} \rightarrow O$
Note $H^{-i}(Q^{0}) = \operatorname{Fret}_{C} (N, C)$.
Hum the cohomologies of Q' are anti-when '
So by continediction
 $H^{-i}(Q^{0}) = Q$

Here we have exact Seg $e \rightarrow g - 4 \rightarrow \cdots \rightarrow g_{p} \rightarrow 0$ ۳ 45. Thus, by dualising get agening N= HO (F.) - Ext & (C/2, C) This means JN = 0. On the other band N is a free B-undule. Inin JN=0, His 3 anonits to saying $BO_{k}P = C$ $J \cap (BOI) = 0$ Heme BB 1 $B \longrightarrow C/_{2} = H^{\circ}(\Gamma_{s}, \mathcal{O}_{\Gamma_{s}}).$ is injection. Thus TI: T'S -> S is an isomorphism.