As usual A is an abrlĩan varicty over $k=\bar{k}, \operatorname{din} A=g$.

Recall : If X is complete vanicty, $S=s_{p u} B$ an affrie k-scheme, and L a line bdle on $X_{S}=X \times S$. The maximal lous in S over whinh L is thivial, is a cloced sulsiberve 2 of S.

$$
\underset{l_{2}}{(\times \varphi)^{x} L} X_{2}, \xrightarrow{n \times p} x_{3}^{L}
$$

$p_{2}^{*} k$
P_{2}
$\Rightarrow Z^{\prime} \xrightarrow{\varphi} S$ fantow as
where k
is a l.b. m2!

$$
z^{\prime} \longrightarrow \varphi
$$

$$
Z^{\prime} \longrightarrow Z \underset{\text { chid }}{C} S
$$

Let $F^{\prime}: 0 \rightarrow F^{0} \rightarrow F^{\prime} \rightarrow \cdots \rightarrow F^{m} \rightarrow 0$
be "the" Gothendieck complex. Lit

$$
Q=\text { cohen }\left(\tilde{F}^{\prime} \longrightarrow \stackrel{V}{F}^{0}\right) . Q=Q_{B} .
$$

- For ang B-motule V

$$
H^{i}\left(F^{\cdot} \otimes_{\beta} V\right) \xrightarrow{\cong} H^{i}\left(X_{S}, L \otimes V\right)
$$

- $\operatorname{kom}_{B}(Q, V) \leftharpoonup \sim H^{0}\left(X_{S}, L \otimes V\right) \xrightarrow{\sim} H^{0}\left(F^{\circ} \otimes_{B} V\right)$
- If $B \rightarrow C$ is a k-algelva map, then $F_{C}^{\prime}:=F^{*} \otimes_{B} C$ is "the" coolhendiuk comples for the pull bent o L on $X \times S_{p r e} C$ and $\quad Q_{C}=Q_{B}\left(B_{B} C=Q(x) C\right.$.
- Let $z \in Y$ be a point sunk that $\left.L\right|_{x \times\{z\}}$ is trinal (io that $z \in Z$) then by the above ofremalosis

$$
\begin{aligned}
\operatorname{Hm}_{B}\left(\theta, \frac{\theta_{x, z}}{m_{z}}\right) & \Longrightarrow H^{0}\left(x \times\{z\},\left.L\right|_{x \times\{z\}}\right) \\
& =H^{0}\left(x, O_{\lambda}\right) \\
& =k .
\end{aligned}
$$

Let $k(z):=\theta_{x, z / m_{z}} \quad k \rightarrow k(z)$ iso.
Sind $k(z) \simeq \operatorname{Nom}_{B}(Q, k(z)) \simeq \operatorname{Hom}_{k(z)}\left(Q / V_{z} Q, k(z)\right)$
thenepre $Q / m_{3} Q$ is 1 dime over $k(z)$. By Nakayama, in a ubled of $\}, Q$ is a cyclic module Lie. generated by me dement. to locally $Q=B / J$ for some ideal J (locally $=$ annal z). We save that aral $z \in Y$. $\operatorname{spm}(B / J)=2$.
(*) - In particular, if B is local ring then $z=S$ ru B / s.

Conventions: R local ring then M_{R} will denier its macilikal.

$$
\text { P.T.O. } \longrightarrow .
$$

Lemena: suppose R is a regular local sing of dimension g. Let

$$
0 \rightarrow F^{0} \rightarrow F^{\prime} \rightarrow F^{2} \rightarrow \ldots \rightarrow F^{m} \rightarrow 0
$$

be a complex of five R-modules such that $H^{i}\left(F^{0}\right)$ are artunian A-modules. Then

$$
H^{i}\left(F^{\cdot}\right)=0 \quad \text { fer } i<g \text {. }
$$

Proof:
The lemma is obvious if $g=0$.
Now suppose $g>0$. Pick $x \in M_{R} \backslash M_{R}^{2}$.
Then we have a short esoart sequence of
complexes:

where $\bar{F}^{i}:=F^{i} / x F^{i}$.

Sine $x \in M_{R}-M_{f}^{2}$, thenpere $\bar{R}:=R / x R$ is also a regular local ring and our induction hypoltesin applies to \bar{R}. Cleanly \bar{F} is a complex of $f \cdot g$. free \bar{R} - modules.
we have a bong es ont sequens

It follous that $H^{i}(F \cdot)$ are artinian f-modules, whence artinion \bar{R}-modules.

By induntion:

$$
H^{i}\left(\bar{F}^{0}\right)=0 \quad \text { for } \quad i<g-1 .
$$

Hene

$$
H^{i+1}\left(F^{\cdot}\right) \xrightarrow{x} H^{i+1}\left(F^{\prime}\right)
$$

is injeture for $i<g-1$. Sime $H^{i+1}\left(F^{\cdot}\right)$ is artinion, it is killed by some power of x, x^{m}. Howeven $H^{i+1}\left(F^{\cdot}\right) \xrightarrow{x^{m}} H^{i+1}(F \cdot)$ is ingulu for $i<g-1$. So $H^{i+1}(F \cdot)=0$ for $i<g-1$.

Unimesal propety of \hat{A} :
Buall $\hat{A}=A / K(\Theta)$ whire Θ is a very ample live leurble on A. In queater detioil, comide

$$
\Lambda=\Lambda(\Theta)=m^{*}(\Theta) \otimes p_{1}^{*} \Theta^{-1} \otimes p_{2}^{*} \Theta^{-1}
$$

on $A \times A$, then $K(C)$ is the morel sulselven of A on which A is trivial. Que chubs that $K(Q)$ is actually a surge esheme of A.

The Poincare bundle on $\hat{A} \times \hat{A}$ is the descent of (1) to $\hat{A} \times A=\frac{A \times A}{K((1)) \times\{0\}}$.

Let $S=S$ sue B where B is an artur local sing with $k=B / m_{B}$. Let $s=$ choul pt is .

Let L be a line bindle on $S \times A$ such that
 $\left.L\right|_{\{\Omega \beta \times A} \in \operatorname{Pic}^{\circ}(A)$. A We would like to pine that \exists ! morpluin $\phi: S \longrightarrow \hat{A}$ such that

$$
\begin{array}{rl}
\left(\phi \times 1_{A}\right) * P & \simeq L \\
L & P \\
& S \times A \xrightarrow{\phi \times 1_{A}} \hat{A} \times A
\end{array}
$$

Let M be the hin bundle on $S \times \hat{A} \times A$ given by

$$
M \simeq P_{23}^{*}(P) \otimes P_{13}^{*}(L)^{-1}
$$

and let
$\Gamma_{S}=$ axil clued salshluase of $S_{x} \hat{A}$ on which M is trial.

Let $\pi: \Gamma_{S} \longrightarrow S$ be the composite
$\Gamma_{S} \subseteq S \times \hat{A} \xrightarrow{P_{1}} S$. We went to show π is
an iscuosphism. Then Γ_{s} is the graph If a! map $\phi: S \longrightarrow \hat{A}$, and this ρ will do the trick. (ϕ is the comprities $S \xrightarrow[\sigma_{1}]{\sim} P_{S} \subseteq S \times \hat{A} \xrightarrow{P_{2}} \hat{A}$).

Without lass of generality, we may assume $\left.L\right|_{\left\{i j_{\times A}\right.}=O_{A}$. This can be done as follows.
we know $\hat{A}(k) \simeq P_{i c}^{D}(A)$, via $\phi_{\Theta}: A \longrightarrow P_{i c}(A)$

$$
\ln \left(\phi_{\theta}\right)=k(\theta)
$$

There $\left.L\right|_{\{\Delta\} \times A}$ (which belong to $\operatorname{Ric}^{\circ}(A)$) amsponds to a enrique pint $\hat{a} \in \hat{A}$, and $\left.\left.L\right|_{\{\delta\} \times A} \cong P\right|_{\{a\{ \} \times A}$. So replace L by

$$
L \otimes P_{2}^{*}\left(L L_{\{\Delta\} \times A}\right)^{-1}
$$

