Lecture 24

As usual A is an abdition variety over $k=\overline{k}$, drin A=g. <u>Recall</u>: If X is complete variety, S=Spec B an affinie E-scheme, and L a line bdle on Xs = XxS. The maximal toms in S over which L is trivial, is a clored subscheme 2 of S. (1xp)* L X2, - xp L Let $F': 0 \longrightarrow F^0 \longrightarrow F' \longrightarrow \cdots \longrightarrow F^m \longrightarrow 0$ be "the" Gothendieck complex. Let $Q = colu (F' \longrightarrow F^{\circ}) \quad Q = Q_{B}$ · For any B-module V $(F^{*} \otimes_{\mathbb{R}} V) \xrightarrow{\simeq} H^{i}(X_{S}, L \otimes V)$ · Worry (Q,V) ~~ H° (Xs, L&V) ~~ H° (F·@V) · J B→C is a k-algebra map, -Uhen Fc := F @ C is "the" Crothendick complex for the pull bank of Lon XxSpiel and $Q_{c} = Q_{g}Q_{g}C = QQC$

hemma! Suppose R ies a regular local ring of dimension g. Let $0 \to F^0 \to F^1 \to F^2 \to \dots \to F^m \to D$ be a complex of free R-modules such that Hi (F.) are artinian A-modules. Then H~ (F)=0 for icg. Proof: The lemma is drives if g=0. Now suppose g=0. Pick x M2 . Then we have a short evant segnence of Complexes: multiplication by x. $0 \longrightarrow F^{\bullet} \xrightarrow{\chi} F' \longrightarrow \overline{F}^{\bullet} \longrightarrow 0$ where $\overline{F^{i}} := \overline{F^{i}} / \overline{\chi} \overline{F^{i}}$. Since zEMp- Mp, Itrerefore R:= P/2p is also a regular beal sing and our induction hypoltresis applies to P. Clearly F. is a complex of f.g. free R - modules. We have a long es out sequence 7 7.7.0.

 $\circ \rightarrow H^{\circ}(F^{\bullet}) \xrightarrow{\sim} H^{\circ}(F^{\bullet}) \xrightarrow{\sim} H^{\circ}(\overline{F}^{\bullet})$ $\xrightarrow{} H^{i}(\mathfrak{k}) \xrightarrow{} H^{i}(\mathfrak{k}) \longrightarrow H^{i}(\mathfrak{k})$ It follows that Hi (F.) are artinian f-modules, -whene artinian R-modules. By induction : $H^{\star}(\overline{F})=0$ for $\tilde{\tau} < g-1$. Hime $H^{\lambda + i}$ (F·) $\xrightarrow{\mathcal{H}}$ $H^{\lambda + i}$ (F·) is injecture for i<g-1. Sime Hit (F') is artinian, it is killed by some power of x, xm, However H^{itl} (F.) <u>xm</u> H^{itl} (F.) is injedu for ic g-1. So Hit' (F.) = 0 for icg-1. Uninesal property of A: Exall $\hat{A} = \frac{A}{F(\Theta)}$ where Θ is a very ample live lemble on A. In quester detroil, consider

$$N = N(@) = m^{*}(@) \otimes p^{*} @^{-1} \otimes p^{*} @^{-1}$$
on AxA, then $E(@)$ is the nors'l inlochem
$$\begin{cases}
A & on which A is trivial. One chicks
that $E(@)$ is artically a sub-gp scheme of A.
The Poincare bundle on $A \times A$ is the
descent $[A]$ $(@)$ to $A \times A = A \times A$.
$$\frac{E(@) \times \{o\}}{E(@) \times \{o\}}$$$$

Let
$$S = Spec B$$
 where B is an article local ring
with $b = Bh_{R_B}$. Let $B = cloud pt AS$.
Let L by a line buille on SxA such that
 $L \mid_{fR_3 x A} \in Pie^{\circ}(A)$. A we would like to prove
that $\exists !$ morphism $\phi : S \longrightarrow A$ such that
 $(\phi x \perp \Delta_A)^* P \simeq L$.
 L P
 L P
 L $A \xrightarrow{d x \perp \Delta_A} A \times A$
Let M be the dive built on $SxA \times A$ given by
 $M \simeq B_3^*(P) \otimes B_3^*(L)^{-1}$.
and let
 $T_S = model cloud substance A SxA on
which M is trivial.
Let $T : \Gamma_S \longrightarrow S$ be the composite
 $\Gamma_S \subseteq SxA \xrightarrow{R} S$, we would to shard T is$

en issumption. Then I's is the graph of a! map of: S - > À, and this of will do the trick. $(\phi \text{ is the compute } S \xrightarrow{\sim} P_{g} \subseteq S \times \widehat{A} \xrightarrow{P_{2}} \widehat{A})$ Μ $S \times A \times A \xrightarrow{P_{13}} S \times A \qquad M = B^* P \otimes F^* L^{-1}.$ 23 P 3 Â×A __ 12 SxÃ ⇒ S Sput Without lass of generality, we may assume L = OA. This can be done as follows. We from $\hat{A}(k) \simeq \operatorname{Pic}^{\circ}(A)$, via $\varphi_{\mathfrak{B}}: A \longrightarrow \operatorname{Pic}(A)$ $a \longmapsto \mathfrak{L}^{*} \mathfrak{G} \mathfrak{G} \mathfrak{G}^{-1}$ $lur(\Phi_0) = F(\Theta)$ There L Sofra (which kelong to Die (A)) ansports to a anique point à E À, and LIEBERA PIFATXA. Lo replace L by LO B* (LIGARA) -1.