$A_s \xrightarrow{T_{\xi}} A_s = A_s$ $\frac{\|}{A\times S} \xrightarrow{1\times f} A\times A \xrightarrow{m} A.$ Hane $T_{f}^{*}(L_{g}) = (I_{x}f)^{*}m^{*}L$ This implies. $T_{f}^{*}(L_{S})|_{follow} = f^{*}L$ Consider the relation (x): T* Ls ~ Ls & p2* N, Nal.b. on S - (7). Suppose (*) is true for some N. Then If *Ls | 1 for 2 Ls | for s ≥ N | for x 5 = N. i.e. $f^*L_c \cong N$. Use the first that Tet (Lg) = (1xf) mt Lg to then conclude that $(l \times f)^* \Lambda = (l \times f)^* m^* L \otimes p_*^* L^{-1} \otimes p_*^* (f^* L)^{-1}$ Thus (x) holds and (haf)* A is trivial The last is equivalent to saying that of fenters through K(L). / Immediate consequence: Z(L) (S) is a subgroup of A(S). Here K(L) is a subgroup scheme A.

Permark Suppose L is ample. Now
$$K(L)_{ned} \subset K(L^m)_{red}$$
,
for $n \ge 1$. Since Lⁿ is very surgle for $n \gg 0$, it
follows that $K(L)_{red}$ is finite. In particular
 $K(L)$ is a finite group scheme.

We know that if L is anyle

$$\varphi_{L}: A \longrightarrow J(A) = Pic^{0}(A)$$

is surjecture. The head φ_{L} can be identified
with $E(L)$. Let
 $\hat{A} = A/E(L)$.
Then from the connects above, morally \hat{A} is a
scheme structure on Pic⁰(A).
One can show:
(a) The action of $E(L)$ on $A \times A$ through the
first faster lifts to $\Lambda(L)$ and hence $\Lambda(L)$
descends to a line bundle P on $(A \times A)/(E(L))$
 $= (A/E(L)) \land A \cong \hat{A} \times A$.
 P is called the Poincaré bundle Fi $\hat{A} \times A$.
(b) $P|_{(\delta_{J} \times A} = O_{A}, P|_{\hat{A} \times \{\delta_{J}\}} = O_{\hat{A}}$.
(c) Let $S \in Sch_{\ell_{E}}$ and engine \mathcal{X} is
a line bundle on $A \times S$ such that
 $\mathcal{X}|_{A \times \{S_{J}\}} \in J^{\circ}(A) = Pic^{\circ}(A) + S \in S$ Item
 $\exists!$ map $f: S \longrightarrow \hat{A}$ each thest

(fx1)* P ~ ZO B* N for some line ble N.

Runale: Note that À is integral, finite type, Complete (segaratedness?) and here is an obulian vericity. Moreover A TLS & being frinte, we must have drin = drin A = g. What are the thronens we wish to prove (if we had another month or so). 1. $H^{\lambda}(\hat{A} \times A, P) = \int 0 \, \bar{\gamma} \, i \neq g$ $\downarrow k \, \bar{\gamma} \, i = g$ 2. drive $H^{i}(A, \mathcal{O}_{A}) = \begin{pmatrix} \vartheta \\ \ddots \end{pmatrix}$ 3. If L is a l.b. on A, the set throater may $\phi_1 : A \longrightarrow \operatorname{Pic}^{\circ}(A) \stackrel{=}{,} \stackrel{\stackrel{}{h}}{a} \longmapsto \operatorname{ta}^{*} \bot \otimes \operatorname{L}^{-1} \xrightarrow{} \operatorname{ta}^{\circ} A$ group scheme homomorphism and its kend (as a subgeroup scheme) is K(L). 4 $\hat{A} \cong A$. 5. Suppose L ~ O(D). Then $X(A, L) = (D^8)$ (R.R. for abelian versidin) π^1 $\chi(A, L)^2 = deg \phi_L$.