Last tine: Let x be a complete vanity $y=S_{p e c} A$ a scheme, L a line bundle on $X_{A}=X_{y}=X_{x_{k}} Y$. Let $0 \rightarrow F^{0} \xrightarrow{\delta^{0}} F^{\prime} \xrightarrow{j^{\prime}} \ldots$ be the uncle Gottrendicat complex, $Q=\operatorname{coln}\left(\left(F^{\prime}\right)^{\nu} \xrightarrow{\left(\delta^{0}\right)^{\vee}}\left(F^{0}\right)^{\vee}\right)$.

Know that $p_{2 *}\left(L \otimes_{A} M\right) \xrightarrow{\sim} \operatorname{Hom}_{A}(Q, M)$ for any A - module M. Let W be the lams on which L is trivial, ie $y \in Y$ s.t. $L X_{x_{y}}$ is trivial. Fix a paint $y \in W$. Then, shrinking Y ournd y if necessary, $Q \cong A / J$. Let $Y_{1}^{\prime}=\operatorname{Sipee}(A(J)$. The louis on which the nat'l may

$$
\lambda:\left.\left.p_{2}^{*} p_{2 x} L\right|_{x_{u_{1}}} \longrightarrow L\right|_{x_{y_{1}}}
$$

is an inounorphism, contains the fibre $p_{2}^{-1}(y)$.
Let 2 be the min of the support of ken (d) and cohen (0). Then 2 is closed in $X x_{k} Y_{1}^{\prime}$, and $p_{2}^{-1}(-y) \cap 2=\phi$. Therepre $p_{2}(z)$ is closed subset of Y_{1}^{\prime} and does not contain y. Thenfure we can find an open subscherne Y_{1} of Y_{1}^{\prime} sunk that Y_{1} contains y and $\left.L\right|_{X_{M_{1}}} \xrightarrow[Y]{\sim} P_{2}^{*} M$ f hat y_{1} fer some M (i ned in Y. . $M=P_{2} \times L$). Shank Since the ave examinining the intivation in a wold of y, we may assure $M \simeq O_{Y_{1}}$.
Claim: Suppose $f: 2 \longrightarrow 4$ is a morphiom of k-schemes such that \exists a live bundle k on 2 and an isonoyphin $p_{2}^{*}(k) \simeq(1 \times f)^{*}(L)$ on $x \times 2$, then f fencers as
$2 \longrightarrow y_{1} C Y$.
Proof of clamin: WLOG can assume $k \simeq O_{2}$.
Arlo can assume $Z=S_{\text {pee }} B$. We have a map $A \longrightarrow B \quad(z \longrightarrow y)$ and we went to prove it enters as $A \longrightarrow A / y \longrightarrow B$.
"Q
Let $F_{B}^{+}=F^{*} \otimes_{A} B, \quad Q_{B}=Q \otimes \otimes_{A} B$. It is clear that F_{B}^{\prime} is the Crothendiecte complex fer $p_{2}: X_{x_{2}} 2 \longrightarrow 2$. Since θ-product is night exact, $Q_{B}=\operatorname{eohn}\left(F_{1} \otimes_{A} B \rightarrow F_{0} \otimes_{A} B\right)$.

Hence, for any B-module N,

$$
\begin{aligned}
\operatorname{Hom}_{B}\left(Q \otimes_{A} B, N\right) & \simeq p_{2 \times}\left(L_{Z} \otimes_{B} N\right) . \\
& \simeq p_{2 *}\left(O_{x \times 2} \otimes_{B} N\right) \\
& \simeq p_{2 \times}\left(\theta_{x \times 2}\right) \otimes N \quad\left(q_{0} j^{n} p m b\right) \\
& \simeq \theta_{2} \otimes N \\
& \cong N .
\end{aligned}
$$

In pentuculan, talking $N=B$, get

$$
\operatorname{Hom}_{B}(B / J B, B) \simeq B . \quad(\sin \quad Q \cong A / J)
$$

The lift side is the sub-module of B consisting 8 element $b \in M$ set. $J-b=0$. Thenfere the $R S$ is also tilled by elements from J. Thur $J B=0$. Heme $A \longrightarrow B$ runt fentor as $A \longrightarrow A G \longrightarrow B$.

The discussion more or lass proves the following Proportion.

Proposition: Let X be a conglite variety, Y any scheme and L a line bundle on $X_{y}=X \times Y$. Then \exists ! clued subschame $Y_{1} C \longrightarrow Y$ having the following propectes:
(a) if L_{1} is tee restuction of L to $X \times Y_{1}$, there is a l.b. M1 on L_{1} and an isomorphism $p_{2}^{*} M_{1} \simeq L_{1}$ on $x \times y$,
(b) if $f: 2 \longrightarrow Y$ is any amorphism s.t. J a line bundle k on 2 and an is orphism $(l x f)^{*} L \simeq p_{2}^{*}(k)$ on $k \times 2$, then f cam be fentoned as $z \longrightarrow y_{1} C Y$. Proof: If Y_{1}^{*} is another clued subscheme with these properties, then y_{1} and y_{1}^{*} are closed sulschenmes of each other and heme $Y_{1}^{*}=Y_{1}$. So uniquevers is clean.

Suppose Y Exists. By the projection formats (or kunveth), if $p_{2}^{*} M_{1} \simeq L_{1}$ then $M_{1} \simeq p_{2 *} L_{\text {. Thenferse }}$ to shone $\exists M_{1}$ is equivalut to showing $p_{2} *\left(L_{1}\right)$ is an invertible sheaf, ant the nat'l may $p_{2}^{*} p_{2 *}\left(L_{1}\right) \longrightarrow L_{1}$ is an insuorplism.

In view of there statements, we are refuel to proving that \exists an open cover $\left\{V_{i}\right\}$ of Y sit. the proportion hold for $X \times V_{i} \longrightarrow V_{i}$ and the rectucliono of L to $x \times U_{i}$. But we have pound exactly this.

Theorem: Let x and y be complete vanictres, 2 a connatud k-scheme, and L a line burble on $x \times 4 \times 2$ who rectuctions to $\left\{x_{0}\right\} \times 4 \times 2, x \times\left\{y_{0}\right\} \times 2$ and $x \times 4 \times\left\{z_{0}\right\}$ are trivial fer some $x_{0} \in X, y_{0} \in Y$, and $z_{0} \in Z$. Then L is trivial.

Proof: Let z^{\prime} be the massinal chen sulsiluere of 2 over while L is toncial. Note $z_{0} \in Z^{\prime}$ and havre $Z^{\prime} \neq \phi$. We have to show $Z^{\prime}=2$. Sine z is connected it is enough to show that if a point belongs to $2^{\prime}, Z^{\prime}$ contains an open neighbourhood (open subschere 82) of that point.
Let us denote this point z_{0}.
Set $M=M_{3_{0}}$ - the maximal idea of $Q_{2, z_{0}}$.
Let $I=9_{30}$, where I is ideal sherif $\eta 2$.
Note $I \subseteq M$.
We have to show that $I=0$.
By Krill's $\mathrm{I}^{\prime} \mathrm{n}$ theorem

$$
\bigcap_{n \geqslant 0} M^{n}=0 .
$$

Supper $I \neq 0$. We know $I \in M$. There exists an integer $n>0$ such that

$$
m^{n} \supset I, m^{n+1} \perp I
$$

ls $\frac{m^{n+1}+I}{m^{n+1}}\left(C \frac{m^{n}}{m^{n+1}}\right)$ is a non-zno
k-veter spare. Let $J_{1}=m^{n+1}+I$. We can find J_{2} s.t. $m^{n+1} \subset J_{2} \subset J_{1}$ surds that

$$
\operatorname{din}_{k} \frac{J_{1}}{J_{2}}=1
$$

lo

$$
J_{1}=J_{2}+a \cdot k
$$

for some $a \in J_{1}$. Moreora $J_{2} \notin I$. $I_{2} \ngtr I$
Let $J_{0}=M$.
Let $Z_{i}=$ Choul sulschame of Z counsting If the single point z_{0} with stindire sherf $\theta_{z, z_{0}} / J_{i}$.

Let L_{0}, L_{1}, L_{2} be the restructions of L to $X \times 4 \times 20, X \times 4 \times Z_{1}, 1 \times 4 \times R_{2}$ We have an exart sequence

$$
0 \longrightarrow Q_{Z_{0}} \xrightarrow{\text { multitication 2ya }} Q_{Z_{2}} \xrightarrow{\text { rectuction }} \theta_{Z_{1}} \longrightarrow 0
$$

Thenfers on the top. spare $x \times y \times z_{0}$ we have an exent sequence of sheares

$$
0 \longrightarrow L_{0} \xrightarrow{\text { milt. bya }} L_{2} \xrightarrow{\text { retrition }} L_{1} \longrightarrow 0
$$

We thowe $Q_{x x y \times z_{1}} \stackrel{\sim}{\lambda} L_{1}$. Therefure we have a woohare vanoking $s=\lambda(1)$ on L_{1}. If is eary to see that L_{2} is tervial if and only if s can
be lifted to a suction s' of L_{2}. Such a ruction s' is recessanty nowhere vanishing.

Therepre if we can show that $S \in H^{2}\left(x \times 4 \times 20, L_{0}\right)$ is zeno where S is the hirange of s under the converting map $H^{0}\left(x x y, L_{1}\right) \longrightarrow H^{\prime}\left(x x y, L_{0}\right)$, then L_{2} is trial.

Sine the vestuctoons of L to $X \times\left\{y_{0}\right\} \times Z$ and $\left\{x_{1}\right\} \times Y \times 2$ are trivial, the restriction of L to $x \times\left\{y_{0}\right\} \times z_{1}$ and $\left\{x_{0}\right\} \times Y_{x}, 2$ are alow timbal, heme the restriction of s to $x \times\left\{y_{0}\right\} \times 2$, and $\left\{x_{0}\right\} \times 4 \times 2$, can be lifted to $L\left|x \times\left\{y_{0}\right\} \times z_{2}, L\right|_{\{n\} \times Y \times z_{2}}$. This means that the singe of 3 by the naps $H^{\prime}\left(x x y, O_{x x y}\right) \longrightarrow H^{\prime}\left(x, Q_{x}\right)$ and $H^{\prime}\left(x \times y, Q_{x x y}\right)$ $\longrightarrow H^{\prime}\left(Y, O_{y}\right)$ are zen. By the rannoth (amen, $H^{\prime}\left(x \times y, \theta_{x x y}\right) \simeq H^{\prime}\left(x, \theta_{x}\right) \oplus H^{\prime}\left(4, \theta_{y}\right)$, and heme ζ is zen.

Thus L_{2} is trivial, where $Z_{2} \subset Z^{\prime}$ a Contradiction.

