Leitine 19

Summery of where we are · If A is an abdian noniety them J°(A) is the geroup of (isomorphism classes of) line bunches L such that the LOL-1 ~ OA. · We showed that I is algebraically equivalent OA in and only if [L] E J° (A). Therefore we can identify (and with do so) J^o(A) with Pic° (A), where Pic° (A) is the iss morphism classes of live bundles algebraically equivalent to OA · We also showed that if H°(L) = 0 then L is angle if and only K(L) is finite. • SI LE Rice (A) and LF OA then H^à(L)=0 4 i. Theorem: Lot L be ample and Me Pic^o (A). Then for some xeA, M≃ trtL@L-1 Remark: Recall that for early line bundle L we had group homomorphissis $d_1 : A \longrightarrow lic^{\circ}(A)$ $n \longmapsto t_n^* \otimes L^{-1}$ What theorem says is that if L is ample then of is

$$0 \rightarrow p_{1*} \not{k} \longrightarrow p_{1*} \not{k}^{\bullet}$$

is essant, and envice $p_{1*} \not{k}^{\bullet}$ is evail this mean
 $p_{1*} \not{k} = 0.$
Now $H^{i}(A \times A, \not{k}) = H^{i}(\Gamma(A \times A, \not{k}^{\bullet}))$
 $= H^{i}(\Gamma(A, p_{1*} \not{k}^{\bullet}))$
 $= 0 \qquad \forall i.$
Now consider $\not{k}|_{g^{-1}}(x)$. We have desceed that
 $\not{k}|_{g^{-1}(x)} \cong t_{i} \not{k} \perp \bigotimes l^{-1}.$ Therefore, say $x \not{k} \not{k}(l)$, we have
 $H^{i}(A, \not{k}|_{g^{-1}(x)}) = 0 \qquad \forall i.$
Since $\not{k}|_{g^{-1}(x)} \cong b_{i} \not{k} \perp \bigotimes l^{-1}$ is trivial if and only if
 $x \not{k} \not{k}(l)$ we are that $P^{\lambda} \not{p}_{2*} \not{k}$ is supported on $\not{k}(l)$.
Using the Goltendiel complex, we then sees that
 $P^{\lambda} \not{p}_{2*} \not{k} = \bigoplus (R^{\lambda} \not{p}_{2*} \not{k})_{z}$

Using the longy spatial sequence, this means

$$H^{i}(A \times A, E) \simeq \bigoplus (P^{i} p_{2*}E)_{X}$$
. H^{i}
However, we've sum that the LHS of the above
is zero. So the RHS is zwo, re. $(P^{i} p_{2*}E)_{X} = 0$, H^{i}
 $X \to X \in E(L)$. We already thous $(P^{i} p_{2*}E)_{X} = 0$ H^{i} ,
and $X \in E(L)$, we already thous $(P^{i} p_{2*}E)_{X} = 0$ H^{i} .
Have $H^{i}(A, E|_{P_{2}^{-1}(N)}) = 0$ H^{i} , and $H \times EA$.
 $H^{i}(A, E|_{P_{2}^{-1}(N)}) = 0$ H^{i} , and $H \times EA$.
 H we pick $n=0$, we have $E|_{B^{-1}(N)} = t_{0}^{*}L \otimes L^{-1} = 0A$,
and we know $H^{o}(A, 0A) \neq 0$. This is a contradiction.

Things we'd like to do: 1. Show that L is non-degenerate rie. K(L) is a finite group scheme, then A/K(L) makes sense and is isomorphic to Pico (A). If L is ample, we have seen this above (modulo the variety structure on A/E(L)). 2. If I is non-degenerate, then there exists a non-negative integer i(L) called the index of L such that $H^{i(L)}(A,L) \neq 0$ and $H^{d}(A,L) = 0$ for $j \neq i(L)$. If L is ample, then (believing this result), clearly $\lambda(L) = 0.$ 3. Inprove L is non-degocenate. Let M be any ample line buille on A. Define $\varphi(m) = \chi(A, L\otimes M^{m}) \qquad n \in \mathbb{Z}.$ We know from standard algebraic growity that p is a polynomial in n, the so-called Wilbert polynomial of L w.r.t. M. Then p & Q [t] has all ite roote in TR and the number pointine roots is equal to i (L).