Summary of where eve ore

- If A is an abclian variety then $J^{0}(A)$ is the geroup of (isomorphism classes of) line bundles L such that $t_{x}^{*} L \otimes L^{-1} \simeq Q_{A}$.
- We showed that L is algebraically equivalent O_{A} in and only if $[L] \in J^{0}(A)$.

Therefore we can identify sand will do so) $J^{0}(A)$ with Pic ${ }^{\circ}(A)$, where $\operatorname{Pic}^{\circ}(A)$ is the isomorphism classes ©) live bundles algebraically equivalent to Θ_{A}

- We also showed that if $H^{\circ}(L) \neq 0$ then L is ample if and only $K(L)$ is fiinte.
- If $L \in \operatorname{Pic}^{0}(A)$ and $L \neq \Theta_{A}$ then $H^{i}(L)=0 \forall i$.

Thionen: Let L be ample and $M \in P_{i c}{ }^{\circ}(A)$. Then for some $x \in A$,

$$
M \simeq t_{x}^{*} L \otimes L^{-1}
$$

Remark: Recall that for earls line bundle L eve had group homounomphusis

$$
\begin{aligned}
\phi_{L}: A & \longrightarrow \operatorname{lic}^{0}(A) \\
x & \longmapsto \theta_{x^{*}} \otimes L^{-1} .
\end{aligned}
$$

What theorem says is that if L is ample then ϕ_{L} is
snijerture. Moreover, from earlier results, we do know that if L is ample $K(L)=\operatorname{kn}\left(\phi_{L}\right)$ is finite. Hence

$$
P_{i c} c^{D}(A) \simeq A / k(L)
$$

Proof:
Let K be the line bundle on $A \times A$ given by

$$
K=m^{*} L \otimes p_{1}^{*} L^{-1} \otimes p_{2}^{*}\left(L^{-1} \otimes M^{-1}\right)
$$

Let $x \in A$.

$$
p_{1}^{-1}(x)=\{x\} \times A, \quad P_{2}^{-1}(x)=A \times\{x\} .
$$

Now

$$
\left.K\right|_{P_{1}^{-1}(x)}=t_{x}^{*} L \otimes L^{-1} \otimes M^{-1} .
$$

and

$$
\left.k\right|_{P_{2}^{-1}(x)}=t_{x}^{*} L \otimes L^{-1} .
$$

Suppose M is not isomorphic to $t x^{*} L \otimes L^{-1}$ for any $x \in A$.
Then $k l_{P_{1}^{-1}(x)}$ is non-truvial for every $x \in A$. Cu the other hand $\left.k\right|_{P_{1}^{-1}(x)} \in P_{i c} 0^{\circ}(A) \forall x \in A$. Thenfure

$$
H i\left(\left.k\right|_{p_{1}^{-1}(x)}\right)=0 \quad \forall i .
$$

Counide

Foo semi-contiminty we see that $R^{i} P_{1 *} k=0 \forall i$.
Let $k \rightarrow \varepsilon^{\circ}$ be an injertue resolution. Four the above $p_{1} \times \varepsilon_{0}^{\circ}$ is exact. By the right exantrass of $p_{* *}$, we know $0 \rightarrow p_{1 *} k \rightarrow p_{1 * x} \varepsilon_{e}^{0} \longrightarrow p_{*} \xi_{e}^{\prime}$ is also exert. It follows that

$$
0 \rightarrow p_{1 *} k \longrightarrow p_{1 *} \varepsilon^{0}
$$

is exact, and shiver $p_{x x} \varepsilon^{\circ}$ is exert this means $p_{1 *} k=0$.

Now $H^{i}(A \times A, K)=H^{i}\left(\Gamma\left(A \times A, \varepsilon_{0}{ }^{\circ}\right)\right)$

$$
\begin{aligned}
& =H^{i}\left(\Gamma\left(A, p_{1 *} \xi e^{*}\right)\right) \\
& =0 \\
& \forall i .
\end{aligned}
$$

Now consider $\left.K\right|_{P_{2}-1}(x)$. We have olesured teal $\left.K\right|_{P_{2}^{-1}(x)} \cong t_{x}^{*} L \otimes L^{-1}$. Therefore, if $x \notin k(L)$, we have

$$
H^{i}\left(A, k l_{P_{2}^{-1}(x)}\right)=0
$$

Sizer $\left.k\right|_{P_{2}^{-1}(x)} \cong b_{x^{*}} L \otimes L^{-1}$ is trial if and only if $x \in K(L)$ we see that $R^{i} P_{2 *} K$ is supported on $K(L)$.

Using the Goltrendiriek couples, one then sees that

$$
R^{i} P_{2 *} k=\bigoplus_{x \in k(L)}\left(R^{i} P_{2 x} k\right)_{x}
$$

Using the lear spectral seppuce, this means

$$
H^{i}(A \times A, k) \simeq \bigoplus_{x \in k(L)}\left(R^{i} p_{2 x} \notin\right)_{x} . \quad \forall i
$$

Howanen, we've sunn that the LHS of the above is zero. So the RHS is zoo, lie. $\left(R^{i} P_{2} * t\right)_{x}=0, \forall i$ \& $\forall x \in k(L)$. We already know $\left(R^{i} P_{2 x} k\right)_{x}=0 \forall i$, and $x \in K(L)$, sine $H^{-\prime}\left(\Lambda,\left.K\right|_{p_{2}^{\prime \prime}}(x)\right)=0-\quad \forall \lambda^{\prime}$.

Heme $H^{i}\left(\Lambda,\left.K\right|_{P_{2}^{-1}(x)}\right)=0 \forall i$, and $\forall x \in A$. If we pile $x=0$, we have $\left.k\right|_{P_{2}^{-1}(x)}=t_{0}^{*} L \otimes L^{-1}=\theta_{A}$, and we know $H^{\circ}\left(A, Q_{A}\right) \neq 0$. This is a contradiction.

Things wend like to do:

1. Show that L is nou-degenenate, lie. $K(L)$ is a finite group scheme, thew $A / K(L)$ males sense and is isoourphie to $\mathrm{Pic}^{\circ}(A)$. If L is ample, we have seen this above (modulo the variety stinctine on $A / K(L)$).
2. If L is non-dygerenate, then there exists a non- vegatim integer $i(L)$ called the index of L such that $H^{i(L)}(A, L) \neq 0$ and $H^{j}(A, L)=0$ for $j \neq i(L)$. If L is ample, then (believing thus result), dearly $i(L)=0$.
3. Suppers L is non-degencerate. Let M be any ample line bundle on A. Define

$$
p(n)=X\left(A, L \otimes M^{n}\right) \quad n \in \mathbb{Z} .
$$

We know from standard alfehaic grouty that p is a polynomial in n, the so-called Dilbert polynomial of L w.r., M. Then $p \in \mathbb{Q}[t]$ has all its roots in \mathbb{R} and the number pointive roots is equal to $i(L)$.

