Let J & be the scheme conducted by giving the various We as we did before. We wond to give a more complete proof that J^3 represents the function $\operatorname{Pic}^{q}_{X_{t_{k}}}$ defined by $T \longmapsto \operatorname{Pic}^{3}(X_{\tau}) \leftarrow \operatorname{foundly} q$ line bundles $q \operatorname{deg} q$ $\operatorname{Pic}(\tau)$ $\operatorname{M} X$ perometersed by τ , 1. Let W be as before, i.e. W is the open onlescheme of X⁽⁸⁾ counting of points we X⁽⁸⁾ such that $H^{4}(X_{\omega}, \mathcal{O}_{\chi_{\omega}}(D_{\tau})) = 0$ where Dio is the effective degree of divino on Xio represented by w. In other words Dro = Du Xuo $\mathfrak{D}_{\mathfrak{n}} \xrightarrow{} \mathsf{X}_{\mathsf{X}} \mathsf{X}^{(\mathfrak{q})}$ Clarins: Let T be a k-schane (not necessarily of frinte type over be) and I a line bundle on X7 much that (i) $dy L_t = g + t \in T$ $H^1(X_{t_0}, L_t) = 0 \quad \forall \quad t \in T$ (ii) Here $L_t = \mathcal{Z}[\chi_t$. Then $\exists! map \ r: T \longrightarrow W$ and a line buille Mon T such that

$$(h^{*})^{*} O(Pu | \chi_{W}) \simeq \chi_{O} q^{*} H.$$

$$\frac{h \to \chi}{h \to \chi}$$
By convictionity
$$q^{*} = 0.$$

$$q$$

Let no none show that J⁸ represents Pic
$$\chi_{f_{1}}$$
.
Let T be a k-scheme (not recessinly of finite type)
and it a line builde on χ_{T} s.t. Le is of degree of χ_{L}
for every $t \in T$.
Let $s \in T$. Inice $h^{\circ}(L_{S}) > O$ ($h^{\circ}(L_{S}) = h^{\circ}(L_{S}) + g + I - g$
let $s \in T$. Inice $h^{\circ}(L_{S}) > O$ ($h^{\circ}(L_{S}) = h^{\circ}(L_{S}) + g + I - g$)
Iterrepore we have at lead one effective
division is on χ_{S} such that $O(D_{S}) \cong L_{S}$. By the
minumal property of $\chi^{(S)}$ we have a map
 $s = Spec(k(S)) \longrightarrow \chi^{(S)}$ and have a map
 $s = Spec(k(S)) \longrightarrow \chi^{(S)}$. Let we be any
closed point in the clusce of u_{S} , and let L be a
line builde on χ s.t. $L^{\infty} O(D_{S})$. Clustly the
quil-back $g = L$ to χ_{S} in $O(D_{S})$.
Fix any line balle M on χ , define
 $T_{M} = \{t \in T \mid H^{4}(\chi_{S}, L_{S} \otimes p^{*}(O(D_{S}) \otimes M^{-1})) = 0\}$
9t is clean that $s \in T_{L}$, where s and L are as
above.

From our earlier calculations we have a map anong from 28 1/* (Q(Do)&M⁻¹) |XTL may TL -> WL TL -> W. This really is a may TL -> WL and here a map TI TL where Us is the image of We in J& What we have shown is: (a) {Til is an open cover of T as L varies oner line bundles in X (b) The Ti's give to give T: T -> J&. It is easy to see that I is the required classifying nop.