Last time we had given together open interheres W2 of X⁽⁸⁾ (X a smooth complete cure of genn of oner a field be). Lecall that We is a copy $W = \{ w \in X^{(q)} | H^1(X_w, L_w) = 0 \}$, where Lue is the live bundle O(Dro). I venies over live landles of degree g on X. If M is another line builde of degree g on X, we have an open inbohane Wip of Wi given en l $W_{LM} = \{ w \in W_{L} \mid H^{1}(X_{w}, O(D_{w}) \otimes M \otimes L^{-1}) = 0 \}.$ It is not hand to see that the following diagram committes for L, M, N line builles m X of deque g WMLAWMN - PLN > WNLAWNM PLM S WLM AWLN where QLM: WML -----> WLM is the map described last time. In raine tennes it is descubed as follows: Let we B WML to that h2 (O (Dw) @ 10 M) = 0 Than I! effective divisor w' of degree of on X such that (O (Dw)) = O (Dw) ⊗ L⊗ M⁻¹. It is clean that w' his

in Win for
$$H^{4}(O(D_{0}\circ)\otimes MO(-i) = 0.$$

Thus the by's give to give a f-scheme 5^{2} .
We will assume in what follows that $b=\overline{b}$. We
fix an effective degree of divisor Do such that
 $H^{2}(X, O(D_{0}) = 0$, and write $w_{0} \in W$ for the corresponding
point on W.
Let W_{L} be the image of W_{L} in 5^{2} .
If $W_{L} \longrightarrow 5^{2}$
Note that since the anero is obtained was a gluesing
forcers, it is an open map, and W_{L} is open in T^{2} .
 $M_{L} = p_{1}^{*}(L \otimes O(-D_{0})) \otimes O(Q_{U})|_{XXW_{L}}$
blue Q_{U} is the unsimal during on $X_{X} \times (^{4})$,
and we are regarding $W_{L} = W$ as an open subscheme
 $\gamma \times (^{2})$. This descends to a line buille on
 $X_{X} U_{L}$ while $W_{L} \simeq W_{L}$.
 $M_{U} \in U_{L}$ is the point comparising to
 $W_{0} \in W = W_{L}$, then one checks that
 $J_{L}|_{X\times \{u_{L}\}} = L$.

Chamin:
$$(J^{+}, \lambda)$$
 represente Pic ${}^{*}_{\lambda\mu}$.
This means, quien a k-showe T and a line
builde M on $X_{T} = \chi_{XT}$ such that the restrictions of
M to X_{L} is a line builde of dequee g for only $U \in T$.
Itsue $\exists ! T \xrightarrow{\bullet} J^{\dagger}$ and a line builde \emptyset on T
such that
 $(1\chi_{T})^{\chi} \chi \cong M \otimes p_{2}^{\chi} \emptyset$.
bupper the claim is time.
 $G_{M} \chi^{(3)}$ we have $O(\beta_{M})$ and we have that
for every $g \in \chi^{(3)}$, $O(\beta_{M}) \Big|_{\chi_{\xi}} = O(\beta_{\xi})$ is a line
builde $\int deque g$. Therefore (if we admit the claim)
we have a map $\chi^{(3)} \longrightarrow J^{\dagger}$. This map is
enjectime. Indeed, if $s \in J^{\ddagger}$, then $\chi \Big|_{\chi_{\delta}}$ is a
line builde $\int deque g$ and if D is any effective
 $dogue g$ diverse on χ_{δ} such $O(D) \cong \chi \Big|_{\chi_{\delta}}$.

dearly q maps to & This shows that J? is of privite type, for it is locally of firite type (early Up is of firite type) and bring the emage of a grass- compart scheme, must be quest- compart. Let us now show that J? is poper over k

Calmitting the claim). Let
$$F$$
 be a division on the and F its.
quotient field, suppose we have a map $S_{FU}E \rightarrow J^{\oplus}$
This is equivalent to having a line bundle L_{K} on X_{K}
 $(X_{K} = X_{K}S_{FU}E)$, if degree g . Let D_{K} be an
effective duisor on X_{K} corresponding to L_{K} . Let
 D_{K} be the clorine g D_{K} in X_{K} .
 D_{K} $\sum_{X_{K}} \sum_{X_{K}} \sum_{$

Spee R. By the univ prop of
$$J^{3}$$
 (unity the claim)
we get a unique map Spec R $\longrightarrow J^{3}$ s.t.
Le is the pull beak of A .
Monone, if $F = I \otimes p^{*} O(-D_{0})$, then F is a family
of degree O live bundles on X parametrised by J^{3} .
 (J^{3}, F) then represents $\operatorname{Pric}_{X/_{E}}$.
In other words $\operatorname{Pric}_{X/_{E}}$ is representable, and the
representing object is called the Janobrian and denoted
 J_{X} or $J_{X/_{E}}$.

It remains to prove the claims:
Let
$$T \in Seh_{k}$$
 and M a family of live budles on X
of degree g parameterised by $T(i \cdot \tilde{e}, M$ is a l.b. on
 X_T and $M|_{X_t}$ is of degree $g \neq t \in T$.
Let $M_t = M|_{X_t}$. Let $s \in T(b)$. Let M_s . Convilu
open set on T given by
 $T_s = \{t \in T \mid H^2(X_t, M_t \otimes M_s^{-1} \otimes O(bo)) = 0\}$.
We will find a map $T_s \longrightarrow U_{M_s}$ and these maps
glue as A varies one $T(k)$. This will give us
a map $T \longrightarrow J^{\frac{3}{2}}$.