Let & be a field, X a complete smooth curve of gens of with at least one k-vational point. We have seen that if b= k then there exists at least one effective during of degree g such that H⁴(X, L)= D where L is the line bundle concerponding the effective division. This means (again with k=E), if U is the lows in X⁽⁸⁾ on which H¹(X, O(D)) voridues (DEU), then I is non-empty. By servi-continuity U is open. Now drop the hypothism that k=k. We have a universal deque q divine $\mathcal{D}_n \subseteq X \times X^{(q)}$, and what the above shows us is that the open set where R¹ px O(Du) vandus is non-empty (since its bare change under & > k is non-curpty). Let us call this loves W. Bu By servi-continuity, if 1/2 roeW then $H^{1}(X_{10}, \mathcal{O}(\mathcal{D}_{10})) = O$ X (B) where the notation is self-explanatory. we will use this later. no rotions to the care where k=k To fix notations W G X (3) is the open subscheme on which $h^{\perp}(Q_{\chi}(Dw)) = 0$.

This means that the only aparture diview in the complete
linear system determined by Lw. Informally there means that
W parameterises line buildes L A degree g with
$$h'(L) = 0$$
.
For of L is a l.b. A deg g with $h'(L) = 0$, again by
R.R. $h^{\circ}(L) = 1$.
Let $\widetilde{J}\widetilde{J} = \coprod W_{L}$

where each
$$W_{L} = W$$
, and L varies our immorphism
classes of him bundles of dequee g.
Suppose L and M are two line bundles of deg g
on X. Set W_{LM} to be the open lows of $W_{L} = W$
consisting of points we GW such that $O(D_{LO}) \otimes M \otimes L^{-1}$
has no H¹.
 $W_{LM} = f w \in W_{L}$ H¹ (Xw, $O(D_{LO}) \otimes M \otimes L^{-1} = O$ f.

Note that
$$W_{LL} = W$$
.
Let $Q_{ML}: W_{ML} \longrightarrow W_{LM}$
be densified as follows: Let us $\in W_{ML}$. Jusie H'(xo, $O(\Delta o) \otimes I(\Theta H^{3}) = D$
we have a unique point $vo' \in W$ such that $O(\Delta o) = O(\Delta o) \otimes I(\Theta H^{3})$.
Let $Q_{ML}(vo) = vo'$. Note that $O(\Delta o') \otimes H(\Theta L^{-1} \simeq O(\Delta o)$.
Let $Q_{ML}(vo) = vo'$. Note that $O(\Delta o') \otimes H(\Theta L^{-1} \simeq O(\Delta o)$,
where $H^{2}(O(\Delta o) \otimes H(\Theta L^{-1}) = O$, v^{2} , $vo' \in U_{LM}$.
Be remains to above that Q_{LM} is a map
of remains to above that Q_{LM} is a map
of varieties. This can be done by replaining us by
a T-valued point
 $vo: T \longrightarrow W_{ML}$
and eithing $vo': T \longrightarrow W_{LM}$ as indicated above,
its get a map (functual in T)
 $d_{LM}(T) : W_{ML}(T) \longrightarrow W_{LM}(T)$
by remade get W_{ML} One W_{LM} .
Note d_{LM} is an isomorphism, the inverse
being d_{ML}
 $W_{LM} \cap W_{LM} \leftarrow Q_{LM}$ Word O_{MM}
 $W_{LM} \cap W_{MM}$
 $Q_{LM} \cap W_{MM}$
Connetion bo the cought rules hold. It follows that

we have a scheme J& by gling the various We along the Win's via the data Echiny. The problems that remain: - Is J& of finte type? - Is it complete - Is it projection? - Does it represent Pact x1/18?