Let k be a field, x a complete sooth curve of geans g with at least one k-rational point.

We have seen that if $k=\bar{k}$ then there exists at least one effective divisor of dequee g such that $H^{1}(X, L)=0$ where L is the line bundle comesponding the effuture divisor.

This means (again with $k=\bar{k}$), if U is the lours in $X^{(g)}$ on which $H^{1}(X, O(D))$ vanishes $(D \in U)$, then U is nou-eupty. By semi-continnty U is open.

Now dip the hypothec that $k=\bar{k}$. We have a unimesal degree g diviour $D_{n} \subseteq X_{x} X(g)$, and what the above shows no is that the open set where $R^{1} P_{2^{*}} O\left(\theta_{n}\right)$ vaishes is non-empty (shine its bare change under $k \longrightarrow \bar{k}$ is non-euptry).

Let us call this lows W. By semi-contunnty, if $w \in W$, then

$$
H^{1}\left(X_{\omega}, Q_{X_{\omega}}\left(D_{\omega}\right)\right)=0
$$

where the notation is self-explanatry. We will use this later.
Let us return to the care where $k=\bar{k}$.
To fix notations $\omega \subseteq X^{(g)}$ is the open subsheme on which $h^{1}\left(Q_{x_{\omega}}\left(D_{\omega}\right)\right)=0$.

Snivel $k=\bar{k}$ and slice ω is of finite type $\left(x^{(g)}\right.$ is of finite lippe) there $\omega\left(f_{e}\right) \neq \phi$.

Fix a k-rational point in W, say w_{0}. Let $D_{0}=D_{\omega}$ be the corresponding divisor on $X=X_{\omega_{0}}$.

Let $L_{0}=O\left(D_{0}\right)$. By $R \cdot R$, since $H^{1}\left(X_{w}, O\left(D_{v}\right)\right)=0$ $\forall w \in \omega$, we have $h^{\prime}\left(Q\left(D_{w}\right)\right)=1$ for all $w \in W$. Indeed (with $L_{\omega}=O\left(D_{\omega}\right)$)

$$
\begin{aligned}
\quad h^{0}\left(L_{\omega}\right)-h^{\prime}\left(L_{\omega}\right) & =\operatorname{dg}\left(L_{\omega}\right)+1-g \\
\Rightarrow \quad h^{0}\left(L_{\omega}\right) & =g+1-g \quad\left(\sin \quad h^{\prime}\left(L_{\omega}\right)=0,2\right. \\
& =1 .
\end{aligned}
$$

This means that the only ffecture dinior in the complete limar system determined by L_{w}. Informally thins meas that W parametrises line bundles L i diquee g with $h^{\prime}(L)=0$. In of L io a lib. I dey g with $h^{\prime}(L)=0$, again by R.R. $\quad h^{0}(L)=1$.

$$
\text { Lat } \tilde{J g}=\frac{11}{L} W_{L}
$$

where earl $W_{L}=W$, and L varies oven isomouphnin classes of tire bundles of dequee g.

Suppose L and M ave two line bundles of $d g g$ on X. Set $W_{L M}$ to be the open lows of $W_{L}=W$ consisting of points w $\in W$ such that $Q\left(D_{\sigma}\right) \otimes M \otimes L^{-1}$ has no H^{\prime}.

$$
W_{L M}=\left\{w \in W_{L} \mid H^{1}\left(X_{w}, \theta\left(D_{w}\right) \otimes M \otimes L^{-1}\right)=0\right\} .
$$

Note that $W_{L L}=W$.
Let $\varphi_{M L}: W_{M L} \longrightarrow W_{L M}$
be derniked as follows: Let $w \in W_{M L}$. Snice $H^{\prime}\left(X_{w}, Q\left(D_{w}\right) \otimes L \otimes H^{-1}\right)=0$ we have a enrique point $w^{\prime} \in W$ such that $\left.Q\left(D_{\omega} \omega^{\prime}\right)=Q\left(D_{\omega}\right) \otimes L \otimes\right)^{\prime \prime}$?

Let $\varphi_{M L}(\omega)=\omega^{\prime}$. Note that $\theta\left(D_{w^{\prime}}\right) \otimes M \otimes L^{-1} \simeq \theta\left(D_{\omega}\right)$
Let $\varphi_{M L}(\tau)=\omega^{\prime}$. Note that $Q\left(D_{0^{\prime}}\right) \otimes M \otimes L^{-1} \simeq Q\left(D_{\omega}\right)$, where $\forall^{2}\left(Q\left(D \omega^{\prime}\right) \otimes M \otimes L^{-1}\right)=0$, ie, $\sigma^{\prime} \in U_{L M}$. It remains to show that $\varphi_{L M}$ is a map of varieties. This can be dove by replaying w by a T-valual point

$$
w: T \longrightarrow w_{M L}
$$

and setting $w^{\prime}: T \longrightarrow \omega_{L M}$ as enidicated above, to get a map (functional in τ)

$$
Q_{L M}(T): W_{M L}(T) \longrightarrow W_{L M}(\tau)
$$

By Yomeda get $\omega_{M L} \xrightarrow{Q_{M L}} W_{L M}$.
Note $Q_{L M}$ is an isworplision, the niue
being $\varrho_{M L}$
Suppose we have truce live L, H, N A dequce g.
Chur that

$$
\omega_{L M} \cap w_{L N} \leftarrow \frac{\varphi_{L N}}{\varphi_{L M}} \omega_{N M} \cap w_{N L}
$$

Counts. So the congle rules hold. It follows that
we have a shlume J^{g} by ghing the vovions W_{L} along the $\omega_{L M}$'s via the data $\left\{S_{L M}\right\}$.

The pooblans that remain:

- Is J^{g} of pinter type?
- Is int complete
- Is it puojitur?
- Does it represent $P_{\mu} c_{x / k}$?

