Lecture 15

Let X be a smooth complete curve over an algebraically dorch field & het X(" be the symmetric n-fold product of X with itself , i.e. X⁽ⁿ⁾ = Xⁿ/S_n. The quotient mean the following: Let U= Spec A be an affine open subscheme of X, then $U^{n}/S_{n} := Spu((A^{\otimes n})^{S_{n}})$. These U^{n}/S_{n} give as me very 4 over appine open subschemes of X to give X"/Su. There is a natural map X" - "> X(") We sono that X × X⁽ⁿ⁾ has univeral effective divisor of degree ny Du. $\beta_{\mu} \longrightarrow \chi_{x} \chi^{(n)}$ frinte and \$2 pilmes which <u>γ</u>(n) are artic local rings of length n. Conclusion: X⁽ⁿ⁾ is the space of effective divisors of degree in on X. This is the so-called Wilbert silver of appendice divisors of degree n on X. Remark: True even if k is not algebraically closed hast time we showed that the bours U on X^(g) (g = gum (X)) on which R¹ p. O(Du) vanishes is non-empty and open.

propuly for & directly in this care. Here is how we do it. $\overset{\mathsf{D}}{\longrightarrow} \chi_{\mathsf{X}} \overset{\mathsf{P}}{\longrightarrow} \chi$ 42 T··· - - > XX ----> Spuk Now suppose we have a k-scheme T and a family of degree 1 divisors D on T. This means D is a closend subscheme of XT = XXpT and D -> T is finite flat with films which are single points. $\mathcal{P} \subseteq \chi_{\tau} = \chi_{\tau}$ None, by servi- contractly t_2 t_{2*} $O(\theta)$ is a line builte This is because H⁰ (X_t, O(D_t)) is one - diviensional for every t; and H2 (X6, Q(Q6)) = 0. In queater detail, since the questions on T, assume T= Spec A and that we have a complexe of f-g. non modules $P' : O \longrightarrow P^{O} \longrightarrow P^{1} \longrightarrow O$ $\operatorname{hul} \operatorname{that} H^{\lambda}(P^{\bullet}\otimes_{A}M) = H^{\lambda}(X_{T}, \mathcal{O}(\mathcal{A})), \forall \lambda.$ By sight exactness of @-product, we get H' (P'OAN) = cohn { P'OAM ~ P'OAM } = color { po_ pigo M Thus $H^{1}(X_{T}, \mathcal{O}(\mathcal{B}) \otimes \mathcal{M}) \xrightarrow{} H^{1}(X_{T}, \mathcal{O}(\mathcal{D})) \otimes \mathcal{M}$. In particula taking M= &(t), tGT,

we get
$$H^{\perp}(\chi_{\tau}, 0(D)) \otimes_{A} k(k) = 0$$
 $\forall k \in T$.
By Nokayann $H^{\perp}(\chi_{\tau}, 0(\rho)) = 0$.
Thus we have an about sequence $0 \longrightarrow H^{0}(P) \longrightarrow P^{0} \longrightarrow P^{1} \longrightarrow 0$
This force $H^{0}(P) \longrightarrow P^{0} \longrightarrow P^{1} \longrightarrow 0$
This force $H^{0}(P) = P^{0} \oplus P^{0} \longrightarrow P^{0} \longrightarrow P^{0} \oplus M \longrightarrow 0$ is exact.
This means
 $H^{0}(P) \otimes_{A} M \longrightarrow P^{0} \otimes_{A} M \longrightarrow D$ is exact.
This means
 $H^{0}(P) \otimes_{A} M \longrightarrow P^{0} \otimes_{A} M \longrightarrow D$ is exact.
 $H^{0}(Y, 0(P)) \otimes_{A} M = H^{0}(P \otimes_{A} M)$
Taking $M = k(k)$, $k \in T$, we get.
 $H^{0}(\chi_{T}, 0(P)) \otimes_{A} k(k) = H^{0}(\chi_{T}, 0(P) \otimes_{A} M)$
Taking $M = k(k)$, $k \in T$, we get.
 $H^{0}(\chi_{T}, 0(P)) \otimes_{A} k(k) = H^{0}(\chi_{T}, 0(P) \otimes_{A} M)$
The right aside is a $k(k)$ -vector space of dimension I ,
since genus $(Y_{k}) = I$, χ_{k} has $k(k)$ - rational $pl \ll$
 $O(P_{K})$ is a line balle of degree I .
but the projective A -module $H^{0}(\chi_{T}, 0(P))$ has
reach Δ .
Let $M = f_{k} \otimes O(P)$.
Let $M = f_{k} \otimes O(P)$.
Then, by the projection formula.
 $g_{k} d = f_{k} \otimes O(P) \otimes M^{-1} \simeq O_{T}$.
but we have a methan vanishing factors is $A = p_{k} \times A$.
So $O \neq i \in H^{0}(T, p_{k} \times A)$.

Howener, $H^{\circ}(T, P_{2*}L) = H^{\circ}(X_{T}, L)$ So & is also a section of L. To avoid confusion we write 5 E H° (Kr, L) when we think of & as an elament of H° (XT, K). The above computations, white useful, are not what we need. he know & -> T is an isomorphism. But D C XXT. So we have the composite $\top \longrightarrow \mathfrak{P} \longleftrightarrow \chi_{\mathsf{X}} \tau \xrightarrow{\Psi_1} \mathfrak{X}.$ r So we have a map or. It is easy to see that $(|x|)^{-1}(\Delta) = \Theta$. Now suppose we have a line L on X7 where T ie a k-scheme, of degree 1, ie Ly:= 2/x, ie of degnée 1. χ χf Replace (Q(D) by I L in the above computations and 7 we see that t. the following is time :

○
$$\mathbb{P}^{1}_{2\times \times} \times \mathbb{P}^{1}_{2\times} \times \mathbb{P}^{1}_{2\times} \times \mathbb{P}^{1}_{2\times} \times \mathbb{P}^{1}_{2\times} \times \mathbb{P}^{1}_{2\times} \mathbb{P}^{1}_{2\times}$$

Early to see again that $\mathcal{O} = (1 \times t)^{-1} (\Delta)$, a here $\mathcal{I} = (1 \times r)^* \mathcal{O}(\Delta).$ Now suppose 2 is a family of degree O line buildes on X parametinged by T. 2 -> X Fix a b-rational point Do MX [(as we did earlier). $T \longrightarrow Speck$ Consider $\mathcal{L}' = \mathcal{L} \otimes \mathfrak{p}^{\ast} \mathcal{O}(\mathfrak{D}_{\mathcal{D}}).$ Then L' is a family of deque I live buildes on X. Sime we git a ! map T: T > X unde that $(l \times r)^{*} (O(\Lambda)) \otimes p_{l}^{*} (O(D_{0}))^{-l} \simeq \mathcal{L} \otimes p_{2}^{*} \mathcal{M}$ for how line buille M. This essentially proves that X is its own Jarohian. It represents Pic X/e dune Pic $\chi_{l_{k}}(T) = \frac{\text{Ric}(\chi_{\tau})}{\text{Ric}(\tau)}$ Pic x/2 is the subjustion for deg O live buddes