Theorem: Let A be an ablian variety over an alg. closed fill k and L a homogenons bine burble C lie. $t_{x}^{*} L \simeq L$ $\forall x \in A(k)$) on A. If L is nontrivial then $t^{i}(A, L)=0$ for all i.
Prof?:
We already fan that $H^{\circ}(A, L)=0$.
Let, as usual $m: A \times A \longrightarrow A$ be the group operation map (addition). Let $s: A \longrightarrow A \times A$ be the map $a \longmapsto(a, 0)$. Then we a $C D$

Suppose $k>0$ is an integer such that $H^{i}(A, L)=0$ for all $i<k$. Recall, since $L \in J(A)$ therefore

$$
m^{*} L=p_{1}^{*} L \otimes p_{2}^{*} L
$$

By kunneth and the above

$$
H^{k}\left(A \times A, m^{*} L\right) \simeq \bigoplus_{i+j=k} H^{i}(A, L) \otimes H^{j}(A, L) .
$$

If $i+j=k$, then eattun i or j is strictly less them k (we are only worrying about i, j, k non-nygative). It follows,
from one choice of k that $H^{k}\left(A \times A, m^{*} L\right)=0$. Now look at the diagram we had, namely:

This means that the identity map on $H^{k}(A, L)$ feutiors as $H^{k}(A, L) \xrightarrow{m^{*}} H^{k}\left(A \times A, m^{*} L\right) \xrightarrow{s^{*}} H^{k}(A, L)$. It follows that the identity map on $H^{*}(A, L)$ is zero, lie. $H^{k}(A, L)=0$.

Curves:
Let C be a smooths complete carve oven be (as usual $k=\bar{k}$). Let w_{c} be the canonical bundle on C. Then we howe the following
(1) $H^{i}(C, 7)=0$ for $i \geqslant 2$, f any sherif.
(2) $H^{i}(C, L)=H^{1-i}\left(C, \omega_{c} \otimes L^{-1}\right)^{*}$ for $i=0,1$, and L a line bundle (Serve dualitíg).
(3) Io any line bundle L

$$
h^{0}(L)-h^{\prime}(L)=\operatorname{deg}(L)+1-g \quad \text { (Rieman-Rogh). }
$$

Here $h^{i}(7)=\operatorname{dinin}_{k}\left(H^{i}(C, f)\right), \quad \exists \in C_{c}$.

Note that if $H^{0}(C, L) \neq 0$, then $\operatorname{deg}(L) \geqslant 0$. This is so for the following reason: Let $0 \neq s \in H^{\circ}(L)$.

Then $D=Z(s)$ (the zens-loms of s) is an effenture divies sunh that $L \simeq G(D)$. Now dey $D \geqslant 0$ suice D is effuture. sime $\operatorname{deg} L=\operatorname{deg} D$, it follows that $\operatorname{deg} L \geqslant 0$.
sinice

$$
h^{1}(L)=h^{0}\left(w_{c} \otimes L^{-1}\right)
$$

(Serve duality)
there fare

$$
\operatorname{deg}\left(w_{c} \otimes L^{-1}\right)<0 \Rightarrow h^{\prime}(L)=0 .
$$

lie.

$$
\operatorname{deg}\left(\omega_{c}\right)-\operatorname{deg}(L)<0 \Rightarrow h^{\prime}(L)=0
$$

lie.

$$
\begin{equation*}
\operatorname{deg} L>2 g-2 \quad \Rightarrow \quad h^{\prime}(L)=0 . \tag{1}
\end{equation*}
$$

Next suppre $\operatorname{deg} L>2 g-1$. Now,

$$
\begin{aligned}
h^{0}(L)-h^{\prime}(L) & =\operatorname{deg} L+(1-g) \\
& >2 g-1+(1-g) \\
& =g
\end{aligned}
$$

Aho $h^{\prime}(L)=0$ from (1). Hune

$$
h^{0}(L)>g \geqslant 0
$$

Whace $h^{0}(L) \neq 0$. So $L \simeq \theta(D)$ fer some effuturs divisor D. Let P be a point on C. Conviden the ex ant seguene

$$
0 \longrightarrow \theta(D-P) \longrightarrow C(D) \longrightarrow k(P) \longrightarrow 0
$$

obtanied by θ-ing the exart seg

$$
0 \longrightarrow Q(-p) \longrightarrow Q_{c} \longrightarrow k(p) \rightarrow 0
$$

by $O(D)$. Snice $\operatorname{deg}(D-P)=\operatorname{deg} D-1>2 g-2$ (for $\operatorname{deg} D>2 g-1)$. Herme $h^{\prime}(C(D-P))=0$. So the exant
sequence $0 \rightarrow O(D-P) \rightarrow Q(D) \longrightarrow k(p) \rightarrow 0$ gives us an exact seq

$$
G \rightarrow H^{\circ}(C, G(D-P)) \rightarrow H^{0}(C, L) \rightarrow k \rightarrow 0
$$

(since $\left.h^{\prime}(O(D-P))=0\right)$
In pentuculan the map

$$
H^{0}(C, L) \otimes_{k} k(p) \longrightarrow L \otimes k(p)=k(p)
$$

is sujectus. In other words L is generated by global suttons (for by Nakayama, this means linat the atrial map $H^{\circ}(C, L) \otimes_{k} \theta_{C} \longrightarrow L$ is sunjecture).
be ne
$d y L>2 g-1 \quad L$ is gevenated by global scutions

Now suppose $\operatorname{deg} L>2 g$. Let P, Q be two posits on C. suppose $P \neq Q$. Couniden the exact sequence

As bepre, $h^{\prime}(L(-P-Q))=0$ and heme arguing as above, the map

$$
H^{\circ}(C, L) \otimes_{k} \theta_{C} \longrightarrow L \otimes k(p) \oplus L \otimes k(Q)
$$

is sunjecture. This means $|D|$ separates points, lie one can find a sutton of L which is zen on P and won zoo on Q.

Now let $P=Q$ and let $m_{p} \subseteq Q_{C}$ be the maxaiual
ideal sher P. We have an exact seq.

We know, sunie deg $(L(-2 P))>2 g-2$, that $h^{\prime}(L(-2 P))=0$, whence we have a sujation

$$
\begin{aligned}
& H^{0}(C, L) \longrightarrow H^{0}\left(C, Q_{C} / M_{p}^{2}\right)= O_{C, p} / m_{p}^{2} . \\
& k \in m_{p} / m_{p}^{2}
\end{aligned}
$$

Heme gwen a non-jeno element of $\mathrm{mp} / \mathrm{m}_{p}^{2}$, say the enrage of π, where $\pi \in M_{p}$ is a inniformisping parameter for $Q_{C,} p$, we cam find a sutton. $s \in H^{\circ}(C, L)$ whore uniage in k is zeus and whee encage in $m p m_{p}^{2} \neq 0$, ie, $s(p)=0, s(\vec{r}) \neq 0$, where \vec{v} is any non-zns tangent vector at P.

This means the map $C \longrightarrow \mathbb{P}(V), V=\Gamma(C, L)^{*}$, is an ernbedding.

If $\operatorname{deg} L>2 g \longrightarrow$ the $\operatorname{map} C \longrightarrow \mathbb{P}(V), V=\Gamma(C, L)^{*}$ is an embedding.

Remark: This shows that every sunooth complete cum is phojenture, and every effuctre divisor is ample. In pent every divisor of positure dignce is ample, In otter wends
eveny line buntle of tre degree is ample.

