Lectrine 10

k=E, A abdian var/k

Pecall we drowed that if L a live bundle on A with H°(L) ≠0, then L is ample if and only if F(L) is finite. A slightly simple proof for the "only if" part. We know that L|F(L) is trivial. On the other hand, since L is ample on A, L|F(L) is ample on F(L). The only way this can happen is if F(L) is a point. //

We stated but did not prove the following those men:

Thereas: Let X and Y be complete varieties, Z a converted reduced scheme and L a line bundle on XX12 such that its restructures to [22] × Y×2, X× [yo] ×2, and X×, Y× [30] are all travial for some rock, yo EY, 30EZ. Then Lie trivial. Remarks: By a scheme we mean a firite type scheme one k. A point is always a cloced point, where a k-rational point. Pros : Suppose first that X is a non-singular (= smooth) curve. Let J(X) (= Pee°(X)) be its Jacobian variety?. J(X) has (and is defined by) the following universal property:

¹ We will construct Jarobians of curves later in the course.

There exists a live bundle in on
$$X \times_{\Sigma} I(A)$$
 such that:
where n T is a release and we have a family $Z \in I$ live
bundles on X parameterised by T_s is Z is a live bundle on
 $X_T := X \times_{\Sigma} T_s$, then there exists a unique map of schemes
 $T: T \longrightarrow I(A)$
such that $(I \times T)^* Z_n \cong Z \otimes g^* M$ for some live
but the $(I \times T)^* Z_n \cong Z \otimes g^* M$ for some live
but the M on T .
but regard L (the live bundle of the statement of live
theorem) as a family of live bundle on X parameterised
by $Y_K Z$. Form the remarks about the Jandvien, this
means we have a map
 $Y_K Z \xrightarrow{\Phi} I(A)$
turk the pull back of X_n to $X_N Y_N Z$ is "essentially" L .
We know that $L = X \times Y_N \{z_0\}$ is truvial. This means
that $L = \{X \times Y_N \{z_0\}\}$ is truvial for energy $Y \in Y$.
We know that $L = X \times Y_N \{z_0\}$ is truvial. This means

the trivial live builde on X
$$\begin{pmatrix} x & 0_X \\ y & 0_X \end{pmatrix}$$
 Therefore, since Y is complete, we get a map from
 $\tilde{q}: Z \longrightarrow J(A)$ such that $\varphi = \tilde{q} \circ p_Z$, when
 q_Z is the projection $\chi_{ZZ} \longrightarrow Z$.
 $\chi_X Z$
 $\chi_X Z$

bypoplane sections, Bettini, and induction on drin X, we are
done. If X is not projective one uses Chow's Lemma
which says there is a projective variety X and a
birstwood (popp) map
$$X \xrightarrow{\Sigma} X \cap E$$
-varieties.
To resume, we have $C \xrightarrow{C} X$, a come such that
 $X_0, X \xrightarrow{C} C$. Let $E \xrightarrow{E} C$ be the normalization of C.
From from what we have proved, $(f \times 1_Y \times 1_Z)^* \perp$ is
trivial on $E \times 1_{XZ}$. This shows that $\lfloor |g_{xy} \times 1_{XZ}|^*$ is
trivial. In particular $\lfloor g_{xy} \times 1_{XZ} g_{zy}^*$ is trivial for all
 $(X, Z) \in XXZ$. Anice Y is a complete variety (and regulting
 \bot as family of line builds on Y parameterized by XXZ)
we see that
 $L \cong p_{1S}^* M$
for some line buildle M on XxZ ($p_{1S}: XxYXZ \longrightarrow XXZ$,
atvised progettor). Now
 $M \cong p_{1S}^* M \Big|_{X \times f_{2Y}^* XZ} = \lfloor x_1 \xi_{2Y} \xi_{XZ} g_{y}^* g_{yy}$ ships there
 $X = \frac{2}{3} Y$
 $X = \frac{2}{3} Y$

Farte abord smooth complete comes: Lot I be a l.b. on a smooth complete ane X. 1. If deg L > 2g-2 then H'(X, L)=0. [leaver : Use Serve duality and note h'(L) = h°(10x00L-1) and dig (·wx ⊗ L-') = 2g-2 - degL and if dig L> 2g-2, this is negative, where HO(X, WX (OL-1) = 0.] 2. If deg L > 2g-1 then L is generated by global sections. In classical terms, if D is a driver with deg D > 2g-1, then (D) is bare point free. (This uses 1.) 3. If deg L > 2g then L is very ample.