HW 5

Due on April 4, 2020 (via moodle by 11:59 pm).

For a commutative ring A, Mod_A denotes the category of A-modules.

For a topological space X, $\mathfrak{Psh}(X)$ will denote the category of pre-sheaves on X, and $\mathfrak{Sh}(X)$ the category of sheaves on X.

For any scheme Z, $\mathcal{A}(Z)$ will denote the category of \mathcal{O}_Z -modules, Z_{qc} the category of quasi-coherent \mathcal{O}_Z -modules, and Z_c the category of coherent \mathcal{O}_Z -modules. The category of Z-schemes will be denotes $Sch_{/Z}$.

The category of abelian groups will be denoted by the symbol \mathcal{Ab} .

In the problems that follow, for simplicity we assume all schemes/rings mentioned are noetherian, unless we specifically say something otherwise. Rings mean commutative rings with multiplicative identity 1, and modules are unital (i.e. $1 \cdot x = x$ for elements x in the module).

Group schemes. Fix a scheme S. Let $T \to S$ an S-scheme. We often simply write $T \in Sch_{/S}$, rather than $\stackrel{T}{\stackrel{\downarrow}{\stackrel{}{\atop}}} \in Sch_{/S}$. If we wish to emphasise the base scheme S, we will write $T/S \in Sch_{/S}$ for typographical convenience. The functor of points $Hom_{Sch_{/S}}(-, T/S)$ will be denoted $h_{T/S}$. Let $W \in Sch_{/T}$. Then it is easy to see that we have a bijection of sets

(†)
$$h_{X_T/T}(W/T) \xrightarrow{\sim} h_{X/S}(W/S)$$

In greater detail, given a map of T-schemes $\varphi \colon W \to X_T = X \times_S T$, the map $p_1 \circ \varphi$ gives us an map of S-schemes $W \to X$. Conversely, suppose $w_0 \colon W \to T$ is the structure map of W as a T scheme. Let $w \colon W \to S$ be any map of S-schemes, where we now regard W as an S-scheme via the forgetful functor. We then have a map of T-schemes $(w, w_0) \colon W \to X \times_S T = X_T$. The two processes, $\varphi \mapsto p_1 \circ \varphi$ and $w \mapsto (w, w_0)$, are inverses of each other. It is not hard to see that the bijection (\dagger) is functorial in W/T. Moreover, if $w_0 \colon W \to T$ factors as $W \to T' \to T$, then the resulting bijection $h_{X_{T'}/T'}(W/T') \xrightarrow{\sim} h_{X/S}(W/S)$ is the composite $h_{X_{T'}/T'}(W/T') \xrightarrow{\sim} h_{X_T/T}(W/T) \xrightarrow{\sim} h_{X/S}(W/S)$. Feel free to use these facts in the exercises that follow.

- 1. Let G be a group scheme over S, i.e. group object in Sch_{S} . Let $g: Z \to G$ be a map of S-schemes. We regard g as a Z valued point of G. Let $\rho_g: h_{G/S}(Z) \to h_{G/S}(Z)$ be the map given by right multiplication on the group $h_{G/S}(Z)$.
 - (a) Suppose $z: T \to Z$ is a Z-scheme. Let $g(z): T \to G$ be the composite $g(z) = g \circ z$. Show that the diagram

commutes.

- (b) Show that $\rho_{g(\cdot)}$ is functorial, i.e. if $F \colon \operatorname{Sch}_{/Z} \to \operatorname{Sch}_{/S}$ is the forgetful functor then $\rho_{g(\cdot)} \colon h_{G/S} \circ F \to h_{G/S} \circ F$ is a natural transformation.
- (c) Via (†) we can interpet the functorial map $\rho_{g(\cdot)}$ as a natural transformation $\rho_{g(\cdot)} \colon h_{G_Z/Z} \to h_{G_Z/Z}$. Let $R_g \colon G_Z \to G_Z$ be the resulting map (via Yoneda) in Sch_Z. We will call R_g the right translation on G_Z by g. Let $m \colon G \times_S G \to G$ be the multiplication map on the group scheme G/S, and $p_2 \colon G_Z \to Z$ the natural structure map (which is equal to the second projection on $G \times_S Z$). Show that

$$R_q = (m \circ (\mathbf{1}_G \times g), p_2)$$

where $\mathbf{1}_{\mathbf{G}}$ denotes the identity map $G \xrightarrow{\mathbf{1}_{G}} G$. In other words, show that the following diagram commutes.

Finite group scheme actions. Let k be an algebraically closed field, and Γ a finite k-algebra (i.e. $\dim_k \Gamma < \infty$) such that $G = \operatorname{Spec} \Gamma$ is a group scheme over k. Let $m: G \times_k G \to G$ be the multiplication map, and $m^*: \Gamma \to \Gamma \otimes \Gamma$ the corresponding homomorphism of k-algebras. For a k-algebra R, let

$$\Delta_R \colon \Gamma \otimes_k R \to R$$

be the map $\Delta_R(\gamma \otimes r) = \det(\mu(\gamma \otimes r))$, where $\mu(\gamma \otimes r) \colon \Gamma \otimes_k R \to \Gamma \otimes_k R$ is "multiplication by $\gamma \otimes r$ ". Note that $\Gamma \otimes R$ is a free *R*-module of finite rank, and hence $\det(\gamma \otimes r)$ makes sense. Δ_R is often called the *norm map* of the *R*-algebra $\Gamma \otimes_k R$ and $\Delta_R(x)$ is called the norm of x for $x \in \Gamma \otimes_k R$.

Let G act on an affine scheme $X = \operatorname{Spec} B$ of finite type over k, and let the action map be $\nu: G \times_k X \to X$. We have a corresponding k-algebra homomorphism $\nu^*: B \to \Gamma \otimes_k B$. Let

$$A = \{ b \in B \mid \nu^*(b) = 1 \otimes b \}.$$

A is often denoted B^G and is called the ring of G-invariants of B.

- **2.** Show that if $f: R \to S$ is a k-algebra homomorphism, then $\Delta_S \circ (1_{\Gamma} \otimes f) = f \circ \Delta_R$.
- **3.** Let $\delta_B \colon B \to B$ be the map given by the formula $\delta_B(\beta) = \Delta_B(\nu^*(\beta)), \beta \in B$. Show that $\delta_B(B) \subset A$. (Caution: δ_B is not in general an additive homomorphism.)

- 4. Let G act on \mathbb{A}^1 via the trivial action. This induces an action $\tilde{\nu}$ of G on $X \times_k \mathbb{A}^1$. The corresponding map $\tilde{\nu}^* \colon B[T] \to \Gamma \times_k B[T]$ of k-algebras is $b \otimes p \mapsto \nu^*(b) \otimes p$, $b \in B, \ p \in k[T]$. As in **3**. we have a map $\delta_{B[T]} \colon B[T] \to B[T]$ given by $\delta_{B[T]} = \Delta_{B[T]} \circ \tilde{\nu}^*$. For $b \in B$, let $\chi_b(T) = \delta_{B[T]}(T-b)$. Show that the coefficients of χ_b are in A. Show also that b satisfies the polynomial χ_b . **Hint:** Let $\epsilon \colon \Gamma \to k$ be the k-algebra map giving the identity element of G(k) and consider $(\epsilon \otimes 1)(\nu^*(b))$ for any element $b \in B$.
- 5. Show that A is finitely generated over k and hence B is a finite A-module.
- **6.** Let Y = Spec A and let $\pi: X \to Y$ be the map of schemes induced by the inclusion $A \hookrightarrow B$. Show that π separates the orbits of X under G and as a topological space (Y, π) is the quotient of X by the finite group underlying the group scheme G.
- 7. Show that
 - (a) The morphism π of **6**. is finite and surjective.
 - (b) For every G-invariant morphism $f: X \to Z$ of k-schemes, there exists a unique morphism of schemes $g: Y \to Z$ such that $f = g \circ \pi$.