Due on April 4, 2020 (via moodle by 11:59 pm).
For a commutative ring $A, \operatorname{Mod}_{A}$ denotes the category of $A$-modules.
For a topological space $X, \operatorname{Psf}(X)$ will denote the category of pre-sheaves on $X$, and $\operatorname{Sh}(X)$ the category of sheaves on $X$.

For any scheme $Z, \mathcal{A}(Z)$ will denote the category of $\mathscr{O}_{Z}$-modules, $Z_{q c}$ the category of quasi-coherent $\mathscr{O}_{Z}$-modules, and $Z_{c}$ the category of coherent $\mathscr{O}_{Z}$-modules. The category of $Z$-schemes will be denotes $\mathbb{S c h}_{/ Z}$.

The category of abelian groups will be denoted by the symbol $\mathcal{A b}$.
In the problems that follow, for simplicity we assume all schemes/rings mentioned are noetherian, unless we specifically say something otherwise. Rings mean commutative rings with multiplicative identity 1 , and modules are unital (i.e. $1 \cdot x=x$ for elements $x$ in the module).

Group schemes. Fix a scheme $S$. Let $T \rightarrow S$ an $S$-scheme. We often simply write $T \in \mathbb{S c h}_{/ S}$, rather than $\underset{S}{\stackrel{T}{~}} \in \mathbb{S c h}_{/ S}$. If we wish to emphasise the base scheme $S$, we will write $T / S \in \mathbb{S c h}_{/ S}$ for typographical convenience. The functor of points $\operatorname{Hom}_{\mathbb{S c h}_{/ S}}(-, T / S)$ will be denoted $h_{T / S}$. Let $W \in \mathbb{S c h}_{/ T}$. Then it is easy to see that we have a bijection of sets

$$
h_{X_{T} / T}(W / T) \xrightarrow{\sim} h_{X / S}(W / S)
$$

In greater detail, given a map of $T$-schemes $\varphi: W \rightarrow X_{T}=X \times_{S} T$, the map $p_{1} \circ \varphi$ gives us an map of $S$-schemes $W \rightarrow X$. Conversely, suppose $w_{0}: W \rightarrow T$ is the structure map of $W$ as a $T$ scheme. Let $w: W \rightarrow S$ be any map of $S$ schemes, where we now regard $W$ as an $S$-scheme via the forgetful functor. We then have a map of $T$-schemes $\left(w, w_{0}\right): W \rightarrow X \times_{S} T=X_{T}$. The two processes, $\varphi \mapsto p_{1} \circ \varphi$ and $w \mapsto\left(w, w_{0}\right)$, are inverses of each other. It is not hard to see that the bijection ( $\dagger$ ) is functorial in $W / T$. Moreover, if $w_{0}: W \rightarrow T$ factors as $W \rightarrow T^{\prime} \rightarrow T$, then the resulting bijection $h_{X_{T^{\prime} / T^{\prime}}}\left(W / T^{\prime}\right) \xrightarrow{\sim} h_{X / S}(W / S)$ is the composite $h_{X_{T^{\prime}} / T^{\prime}}\left(W / T^{\prime}\right) \xrightarrow{\sim} h_{X_{T} / T}(W / T) \xrightarrow{\sim} h_{X / S}(W / S)$. Feel free to use these facts in the exercises that follow.

1. Let $G$ be a group scheme over $S$, i.e. group object in $\operatorname{Sch}_{/ S}$. Let $g: Z \rightarrow G$ be a map of $S$-schemes. We regard $g$ as a $Z$ valued point of $G$. Let $\rho_{g}: h_{G / S}(Z) \rightarrow$ $h_{G / S}(Z)$ be the map given by right multiplication on the group $h_{G / S}(Z)$.
(a) Suppose $z: T \rightarrow Z$ is a $Z$-scheme. Let $g(z): T \rightarrow G$ be the composite $g(z)=g \circ z$. Show that the diagram

commutes.
(b) Show that $\rho_{g(\cdot)}$ is functorial, i.e. if $F: \mathbb{S c h}_{/ Z} \rightarrow \mathbb{S c h}_{/ S}$ is the forgetful functor then $\rho_{g(\cdot)}: h_{G / S} \circ F \rightarrow h_{G / S} \circ F$ is a natural transformation.
(c) Via ( $\dagger$ ) we can interpet the functorial map $\rho_{g(\cdot)}$ as a natural transformation $\rho_{g(\cdot)}: h_{G_{Z} / Z} \rightarrow h_{G_{Z} / Z}$. Let $R_{g}: G_{Z} \rightarrow G_{Z}$ be the resulting map (via Yoneda) in $\mathbb{S c h}_{/ Z}$. We will call $R_{g}$ the right translation on $G_{Z}$ by $g$. Let $m: G \times{ }_{S} G \rightarrow G$ be the multiplication map on the group scheme $G / S$, and $p_{2}: G_{Z} \rightarrow Z$ the natural structure map (which is equal to the second projection on $G \times_{S} Z$ ). Show that

$$
R_{g}=\left(m \circ\left(\mathbf{1}_{G} \times g\right), p_{2}\right)
$$

where $\mathbf{1}_{\mathbf{G}}$ denotes the identity $\operatorname{map} G \xrightarrow{\mathbf{1}_{G}} G$. In other words, show that the following diagram commutes.


Finite group scheme actions. Let $k$ be an algebraically closed field, and $\Gamma$ a finite $k$-algebra (i.e. $\operatorname{dim}_{k} \Gamma<\infty$ ) such that $G=\operatorname{Spec} \Gamma$ is a group scheme over $k$. Let $m: G \times_{k} G \rightarrow G$ be the multiplication map, and $m^{*}: \Gamma \rightarrow \Gamma \otimes \Gamma$ the corresponding homomorphism of $k$-algebras. For a $k$-algebra $R$, let

$$
\Delta_{R}: \Gamma \otimes_{k} R \rightarrow R
$$

be the map $\Delta_{R}(\gamma \otimes r)=\operatorname{det}(\mu(\gamma \otimes r))$, where $\mu(\gamma \otimes r): \Gamma \otimes_{k} R \rightarrow \Gamma \otimes_{k} R$ is "multiplication by $\gamma \otimes r$ ". Note that $\Gamma \otimes R$ is a free $R$-module of finite rank, and hence $\operatorname{det}(\gamma \otimes r)$ makes sense. $\Delta_{R}$ is often called the norm map of the $R$-algebra $\Gamma \otimes_{k} R$ and $\Delta_{R}(x)$ is called the norm of $x$ for $x \in \Gamma \otimes_{k} R$.

Let $G$ act on an affine scheme $X=\operatorname{Spec} B$ of finite type over $k$, and let the action map be $\nu: G \times{ }_{k} X \rightarrow X$. We have a corresponding $k$-algebra homomorphism $\nu^{*}: B \rightarrow \Gamma \otimes_{k} B$. Let

$$
A=\left\{b \in B \mid \nu^{*}(b)=1 \otimes b\right\} .
$$

$A$ is often denoted $B^{G}$ and is called the ring of $G$-invariants of $B$.
2. Show that if $f: R \rightarrow S$ is a $k$-algebra homomorphism, then $\Delta_{S} \circ\left(1_{\Gamma} \otimes f\right)=$ $f \circ \Delta_{R}$.
3. Let $\delta_{B}: B \rightarrow B$ be the map given by the formula $\delta_{B}(\beta)=\Delta_{B}\left(\nu^{*}(\beta)\right), \beta \in B$. Show that $\delta_{B}(B) \subset A$. (Caution: $\delta_{B}$ is not in general an additive homomorphism.)
4. Let $G$ act on $\mathbb{A}^{1}$ via the trivial action. This induces an action $\widetilde{\nu}$ of $G$ on $X \times{ }_{k} \mathbb{A}^{1}$. The corresponding map $\widetilde{\nu}^{*}: B[T] \rightarrow \Gamma \times{ }_{k} B[T]$ of $k$-algebras is $b \otimes p \mapsto \nu^{*}(b) \otimes p$, $b \in B, p \in k[T]$. As in 3. we have a map $\delta_{B[T]}: B[T] \rightarrow B[T]$ given by $\delta_{B[T]}=\Delta_{B[T]} \circ \widetilde{\nu}^{*}$. For $b \in B$, let $\chi_{b}(T)=\delta_{B[T]}(T-b)$. Show that the coefficients of $\chi_{b}$ are in $A$. Show also that $b$ satisfies the polynomial $\chi_{b}$. Hint: Let $\epsilon: \Gamma \rightarrow k$ be the $k$-algebra map giving the identity element of $G(k)$ and consider $(\epsilon \otimes 1)\left(\nu^{*}(b)\right)$ for any element $b \in B$.
5. Show that $A$ is finitely generated over $k$ and hence $B$ is a finite $A$-module.
6. Let $Y=\operatorname{Spec} A$ and let $\pi: X \rightarrow Y$ be the map of schemes induced by the inclusion $A \hookrightarrow B$. Show that $\pi$ separates the orbits of $X$ under $G$ and as a topological space $(Y, \pi)$ is the quotient of $X$ by the finite group underlying the group scheme $G$.
7. Show that
(a) The morphism $\pi$ of $\mathbf{6}$. is finite and surjective.
(b) For every $G$-invariant morphism $f: X \rightarrow Z$ of $k$-schemes, there exists a unique morphism of schemes $g: Y \rightarrow Z$ such that $f=g \circ \pi$.

