Due on March 10, 2020 (via moodle by 11:59 pm).
For a commutative ring $A, \operatorname{Mod}_{A}$ denotes the category of A-modules.
For a topological space $X, P s \hbar(X)$ will denote the category of pre-sheaves on X, and $\operatorname{Sk}(X)$ the category of sheaves on X.

For any scheme $Z, \mathcal{A}(Z)$ will denote the category of \mathscr{O}_{Z}-modules, $Z_{q c}$ the category of quasi-coherent \mathscr{O}_{Z}-modules, and Z_{c} the category of coherent \mathscr{O}_{Z}-modules.

The category of abelian groups will be denoted by the symbol $\mathfrak{A b}$.
In the problems that follow, for simplicity we assume all schemes/rings mentioned are noetherian, unless we specifically say something otherwise. Rings mean commutative rings with multiplicative identity 1 , and modules are unital (i.e. $1 \cdot x=x$ for elements x in the module).
The Grothendieck complex. Let A be a ring, $f: X \rightarrow \operatorname{Spec} A=T$ a proper map, and \mathscr{F} a coherent sheaf on X, \mathfrak{U} a finite affine open cover of X, and P^{\bullet} a bounded complex of projective A-modules, with $P^{m}=0$ for $m<0$, such that we have a quasi-isomorphism $\varphi: P^{\bullet} \rightarrow C^{\bullet}(\mathfrak{U}, \mathscr{F})$. Proposition 12.2 on p. 282 of Hartshorne's Algebraic Geometry together with of Problem $\mathbf{3}$ of HW 3 guarantees the existence of such a complex. The complex P^{\bullet} is called the Grothendieck complex of \mathscr{F}. As is often the case in informal mathematics, the use of the definite article "the" is of course problematic. Recall that $\varphi \otimes_{A} M$ is then a quasi-isomorphism for every A-module M, whence $\mathrm{H}^{i}\left(P^{\bullet} \otimes_{A} M\right) \xrightarrow{\sim} \mathrm{H}^{i}\left(X, \mathscr{F} \otimes_{A} M\right)$ (see conventions below) for all i.

Our conventions are as follows. We write X_{t} for the fibre of f over a point $t \in T$, i.e. $X_{t}=X \times_{T}$ Spec $k(t)$. The right side is often denoted in the literature by the symbol $X \otimes_{A} k(t)$ and we might indulge in that abuse of notation. For t as above, we write \mathscr{F}_{t} for the pull back of \mathscr{F} to X_{t} under the natural map $X_{t} \rightarrow X$. We might also write it as $\left.\mathscr{F}\right|_{X_{t}}$. As in earlier homework assignments, $\mathscr{F} \otimes_{A} M$ is short hand for $\mathscr{F} \otimes_{\mathscr{O}_{X}} f^{*} \widetilde{M}$ for any A-module M. If $T^{\prime} \rightarrow T$ is a map of schemes, we write $X_{T^{\prime}}$ for $X \times_{\operatorname{Spec} A} T^{\prime}$. The latter scheme will often be written as $X \times_{A} T^{\prime}$. The pull back of \mathscr{F} to $X_{T^{\prime}}$ will be denoted $\mathscr{F}_{T}{ }^{\prime \prime}$. If $T^{\prime}=\operatorname{Spec} B$ then we often write X_{B} or $X \otimes_{A} B$ for $X_{T^{\prime}}$. In this case we often write \mathscr{F}_{B} for $\mathscr{F}_{T^{\prime}}$.

1. For an A-algebra B, show that $\mathrm{H}^{i}\left(P^{\bullet} \otimes_{A} B\right) \xrightarrow{\sim} \mathrm{H}^{i}\left(X_{B}, \mathscr{F}_{B}\right)$, for all i. Conclude in particular that $\mathrm{H}^{i}\left(P^{\bullet} \otimes_{A} k(t)\right) \xrightarrow{\sim} \mathrm{H}^{i}\left(X_{t}, \mathscr{F}_{t}\right)$ for all i.
2. Suppose n is a non-negative integer such that $\mathrm{H}^{i}\left(X_{t}, \mathscr{F}_{t}\right)=0$ for all $i>n$. Show that we may choose our Grothendieck complex P^{\bullet} so that $P^{m}=0$ for $m>n$. Hint: Use a technique demonstrated in Lecture 15 to show that $\mathrm{H}^{m}\left(P^{\bullet}\right)=0$ for $m>n$, and then use this to modify P^{\bullet} via a descending induction. Remark: Suppose n is a non-negative integer such that $\operatorname{dim} X_{t} \leq n$ for all $t \in T$. ${ }^{1}$ Then the problem above shows, via Theorem 2.7 on p. 208 of Hartshorne's Algebraic
[^0]Geometry, that we can choose P^{\bullet} to be such that $P^{m}=0$ for $m>n$.
3. Suppose T is connected.
(a) Show that the Euler characteristic $\chi\left(X_{t}, \mathscr{F}_{t}\right)$ does not depend upon $t \in T$. Recall that the Euler characteristic of any coherent sheaf \mathscr{G} on X_{t} is the alternating sum $\sum_{i \geq 0}(-1)^{i} h^{i}(\mathscr{G})$ where $h^{i}(\mathscr{G})=\operatorname{dim}_{k(t)} \mathrm{H}^{i}\left(X_{t}, \mathscr{G}\right)$.
(b) Suppose k is a field and C a complete smooth geometrically connected curve over k (a sufficient condition for this is that X has a k-rational point). Let $X=C_{T}=C \times_{k} T$. If \mathscr{F} is a line bundle on X, show that $\operatorname{deg} \mathscr{F}_{t}$ does not depend upon $t \in T$.

The Jacobian variety of a curve. Here are some definitions and notations. Suppose S is a scheme. We write $\mathbb{S c h}_{/ S}$ for the category of S-schemes. If $S=$ $\operatorname{Spec} A$, we will often write $\mathbb{S c h}_{/ B}$ for $\mathbb{S c h}_{/ S}$.

For a scheme $U, \operatorname{Pic}(U)$ is the set of isomorphism classes of line bundles (i.e. invertible sheaves) on U. It is clear that Pic is a contravariant functor on the category of schemes $\mathbb{S c h}_{/ \mathbf{Z}}$. In fact it is a group functor, since isomorphism classes of line bundles on U form a group under tensor product.

Let S be a scheme and X an S-scheme. As above, let $\mathscr{A b}$ denote the category of abelian groups. The absolute Picard functor on X is the functor $\operatorname{Pic}_{X}: \mathbb{S c h}_{/ S} \rightarrow \mathscr{A b}$ given by

$$
\operatorname{Pic}_{X}(T)=\operatorname{Pic}\left(X \times_{S} T\right)=\operatorname{Pic}\left(X_{T}\right)
$$

The relative Picard functor on X is the functor $\mathscr{P} c_{X / S}: \mathbb{S c h}_{/ S} \rightarrow \mathscr{A} 6$ given by

$$
\mathscr{P} i c_{X / S}(T)=\frac{\operatorname{Pic}\left(X \times_{S} T\right)}{\operatorname{Pic}(T)}=\frac{\operatorname{Pic}_{X}(T)}{\operatorname{Pic}(T)}\left(=\frac{\operatorname{Pic}\left(X_{T}\right)}{\operatorname{Pic}(T)}\right)
$$

If $S=\operatorname{Spec} B$ then we may write $\mathscr{P} i c_{X / B}$ for $\mathscr{P} i c_{X / S}$.
4. Let X be a smooth complete curve over a field k with a k-rational point D_{0} on it.
(a) For $T \in \mathbb{S c h}_{/ k}$ and a line bundle \mathscr{L} on X_{T}, let $[\mathscr{L}]$ denote the image of \mathscr{L} in $\mathscr{P}_{i c_{X / k}}(T)$. Show that if $[\mathscr{L}]=[\mathscr{M}]$ then $\operatorname{deg} \mathscr{L}_{t}=\operatorname{deg} \mathscr{M}_{t}$ for all $t \in T$.
(b) For $n \in \mathbf{Z}$, let $\mathscr{P} i c_{X / k}^{n}$ be the functor of $\mathscr{P} i c_{X / k}$ given by

$$
\mathscr{P} i c_{X / k}^{n}(T) \xrightarrow{\sim}\left\{[\mathscr{L}] \in \mathscr{P} i c_{X / k}(T) \mid \operatorname{deg} \mathscr{L}_{t}=n, t \in T\right\}
$$

Show that for $n, m \in \mathbf{Z}, \mathscr{P} i c_{X / k}^{n} \xrightarrow{\sim} \mathscr{P} i c_{X / k}^{m}$. (Remark: If we regard $\mathscr{P} i c_{X / k}$ as functor taking values in (Sets) rather than $\mathscr{A} 6$, for example by applying the forgetful functor, that $\mathscr{P} i c_{X / k}^{n}$ is a subfunctor of $\mathscr{P} i c_{X / k}$.)
(c) Show that $\mathscr{P} i c_{X / k}^{0}$ takes values in $\mathscr{A} b$ and is a subfunctor of $\mathscr{P} i c_{X / k}$.
(d) Suppose the genus of X is 1 . In Lecture 15, we essentially proved that $\mathscr{P} i c_{X / k}^{1}$ is representable by $\left(X,\left[\mathscr{O}_{X \times_{k} X}(\Delta)\right]\right)$ where Δ is the diagonal in $X \times_{k} X$. This means, by part (b), $\mathscr{P} i c_{X / k}^{0}$ is representable by X and a suitable element of $\mathscr{P} i c_{X / k}^{0}(X)$. In particular X is a group variety, whence
an abelian variety. Show that $3 D_{0}$ gives an embedding of X into the projective plane and that three points in $X(k)$ are collinear if and only if their sum is 0 .

[^0]: ${ }^{1}$ Here the dimension of a scheme is its dimension as a noetherian topological space (see the definition at the bottom of page 5 of Hartshorne's Algebraic Geometry).

