HW 4

Due on March 10, 2020 (via moodle by 11:59 pm).

For a commutative ring A, Mod_A denotes the category of A-modules.

For a topological space X, $\mathfrak{Psh}(X)$ will denote the category of pre-sheaves on X, and $\mathfrak{Sh}(X)$ the category of sheaves on X.

For any scheme Z, $\mathcal{A}(Z)$ will denote the category of \mathcal{O}_Z -modules, Z_{qc} the category of quasi-coherent \mathcal{O}_Z -modules, and Z_c the category of coherent \mathcal{O}_Z -modules. The category of abelian groups will be denoted by the symbol \mathcal{Ab} .

The category of abenan groups will be denoted by the symbol Ab.

In the problems that follow, for simplicity we assume all schemes/rings mentioned are noetherian, unless we specifically say something otherwise. Rings mean commutative rings with multiplicative identity 1, and modules are unital (i.e. $1 \cdot x = x$ for elements x in the module).

The Grothendieck complex. Let A be a ring, $f: X \to \operatorname{Spec} A = T$ a proper map, and \mathscr{F} a coherent sheaf on X, \mathfrak{U} a finite affine open cover of X, and P^{\bullet} a bounded complex of projective A-modules, with $P^m = 0$ for m < 0, such that we have a quasi-isomorphism $\varphi: P^{\bullet} \to \check{C}^{\bullet}(\mathfrak{U}, \mathscr{F})$. Proposition 12.2 on p.282 of Hartshorne's Algebraic Geometry together with of Problem **3** of HW 3 guarantees the existence of such a complex. The complex P^{\bullet} is called the Grothendieck complex of \mathscr{F} . As is often the case in informal mathematics, the use of the definite article "the" is of course problematic. Recall that $\varphi \otimes_A M$ is then a quasi-isomorphism for every A-module M, whence $\operatorname{H}^i(P^{\bullet} \otimes_A M) \xrightarrow{\sim} \operatorname{H}^i(X, \mathscr{F} \otimes_A M)$ (see conventions below) for all i.

Our conventions are as follows. We write X_t for the fibre of f over a point $t \in T$, i.e. $X_t = X \times_T \operatorname{Spec} k(t)$. The right side is often denoted in the literature by the symbol $X \otimes_A k(t)$ and we might indulge in that abuse of notation. For t as above, we write \mathscr{F}_t for the pull back of \mathscr{F} to X_t under the natural map $X_t \to X$. We might also write it as $\mathscr{F}|_{X_t}$. As in earlier homework assignments, $\mathscr{F} \otimes_A M$ is short hand for $\mathscr{F} \otimes_{\mathscr{O}_X} f^* \widetilde{M}$ for any A-module M. If $T' \to T$ is a map of schemes, we write $X_{T'}$ for $X \times_{\operatorname{Spec} A} T'$. The latter scheme will often be written as $X \times_A T'$. The pull back of \mathscr{F} to $X_{T'}$ will be denoted $\mathscr{F}_{T''}$. If $T' = \operatorname{Spec} B$ then we often write X_B or $X \otimes_A B$ for $X_{T'}$. In this case we often write \mathscr{F}_B for $\mathscr{F}_{T'}$.

- **1.** For an A-algebra B, show that $\mathrm{H}^{i}(P^{\bullet} \otimes_{A} B) \xrightarrow{\sim} \mathrm{H}^{i}(X_{B}, \mathscr{F}_{B})$, for all *i*. Conclude in particular that $\mathrm{H}^{i}(P^{\bullet} \otimes_{A} k(t)) \xrightarrow{\sim} \mathrm{H}^{i}(X_{t}, \mathscr{F}_{t})$ for all *i*.
- 2. Suppose n is a non-negative integer such that $\operatorname{H}^{i}(X_{t}, \mathscr{F}_{t}) = 0$ for all i > n. Show that we may choose our Grothendieck complex P^{\bullet} so that $P^{m} = 0$ for m > n. **Hint:** Use a technique demonstrated in Lecture 15 to show that $\operatorname{H}^{m}(P^{\bullet}) = 0$ for m > n, and then use this to modify P^{\bullet} via a descending induction. **Remark:** Suppose n is a non-negative integer such that dim $X_{t} \leq n$ for all $t \in T$.¹ Then the problem above shows, via Theorem 2.7 on p.208 of Hartshorne's Algebraic

¹Here the dimension of a scheme is its dimension as a noetherian topological space (see the definition at the bottom of page 5 of Hartshorne's Algebraic Geometry).

Geometry, that we can choose P^{\bullet} to be such that $P^m = 0$ for m > n.

- **3**. Suppose T is connected.
 - (a) Show that the Euler characteristic $\chi(X_t, \mathscr{F}_t)$ does not depend upon $t \in T$. Recall that the Euler characteristic of any coherent sheaf \mathscr{G} on X_t is the alternating sum $\sum_{i>0} (-1)^i h^i(\mathscr{G})$ where $h^i(\mathscr{G}) = \dim_{k(t)} \mathrm{H}^i(X_t, \mathscr{G})$.
 - (b) Suppose k is a field and C a complete smooth geometrically connected curve over k (a sufficient condition for this is that X has a k-rational point). Let $X = C_T = C \times_k T$. If \mathscr{F} is a line bundle on X, show that deg \mathscr{F}_t does not depend upon $t \in T$.

The Jacobian variety of a curve. Here are some definitions and notations. Suppose S is a scheme. We write $Sch_{/S}$ for the category of S-schemes. If S = Spec A, we will often write $Sch_{/B}$ for $Sch_{/S}$.

For a scheme U, $\operatorname{Pic}(U)$ is the set of isomorphism classes of line bundles (i.e. invertible sheaves) on U. It is clear that Pic is a contravariant functor on the category of schemes $\operatorname{Sch}_{/\mathbf{Z}}$. In fact it is a group functor, since isomorphism classes of line bundles on U form a group under tensor product.

Let S be a scheme and X an S-scheme. As above, let $\mathcal{A}b$ denote the category of abelian groups. The *absolute Picard functor* on X is the functor $\operatorname{Pic}_X : \operatorname{Sch}_{/S} \to \mathcal{A}b$ given by

$$\operatorname{Pic}_X(T) = \operatorname{Pic}(X \times_S T) = \operatorname{Pic}(X_T).$$

The relative Picard functor on X is the functor $\mathscr{P}ic_{X/S} \colon \mathrm{Sch}_{/S} \to \mathcal{A}b$ given by

$$\mathscr{P}ic_{X/S}(T) = \frac{\operatorname{Pic}(X \times_S T)}{\operatorname{Pic}(T)} = \frac{\operatorname{Pic}_X(T)}{\operatorname{Pic}(T)} \left(= \frac{\operatorname{Pic}(X_T)}{\operatorname{Pic}(T)} \right)$$

If $S = \operatorname{Spec} B$ then we may write $\mathscr{P}ic_{X/B}$ for $\mathscr{P}ic_{X/S}$.

- **4**. Let X be a smooth complete curve over a field k with a k-rational point D_0 on it.
 - (a) For $T \in Sch_{/k}$ and a line bundle \mathscr{L} on X_T , let $[\mathscr{L}]$ denote the image of \mathscr{L} in $\mathscr{P}ic_{X/k}(T)$. Show that if $[\mathscr{L}] = [\mathscr{M}]$ then deg $\mathscr{L}_t = \deg \mathscr{M}_t$ for all $t \in T$.
 - (b) For $n \in \mathbf{Z}$, let $\mathscr{P}ic_{X/k}^n$ be the functor of $\mathscr{P}ic_{X/k}$ given by

$$\mathscr{P}ic_{X/k}^n(T) \xrightarrow{\sim} \{ [\mathscr{L}] \in \mathscr{P}ic_{X/k}(T) \mid \deg \mathscr{L}_t = n, t \in T \}.$$

Show that for $n, m \in \mathbb{Z}$, $\mathscr{P}ic_{X/k}^n \longrightarrow \mathscr{P}ic_{X/k}^m$. (**Remark:** If we regard $\mathscr{P}ic_{X/k}$ as functor taking values in (**Sets**) rather than $\mathcal{A}b$, for example by applying the forgetful functor, that $\mathscr{P}ic_{X/k}^n$ is a subfunctor of $\mathscr{P}ic_{X/k}$.)

- (c) Show that $\mathscr{P}ic_{X/k}^0$ takes values in $\mathcal{A}b$ and is a subfunctor of $\mathscr{P}ic_{X/k}$.
- (d) Suppose the genus of X is 1. In Lecture 15, we essentially proved that $\mathscr{P}ic_{X/k}^1$ is representable by $(X, [\mathscr{O}_{X \times_k X}(\Delta)])$ where Δ is the diagonal in $X \times_k X$. This means, by part (b), $\mathscr{P}ic_{X/k}^0$ is representable by X and a suitable element of $\mathscr{P}ic_{X/k}^0(X)$. In particular X is a group variety, whence

an abelian variety. Show that $3D_0$ gives an embedding of X into the projective plane and that three points in X(k) are collinear if and only if their sum is 0.