HW 3

Due on Jan 25, 2020 (via moodle by 11:59 pm).

For a commutative ring A, Mod_A denotes the category of A-modules.

For a topological space X, $\mathfrak{Psh}(X)$ will denote the category of pre-sheaves on X, and $\mathfrak{Sh}(X)$ the category of sheaves on X.

For any scheme Z, $\mathcal{A}(Z)$ will denote the category of \mathcal{O}_Z -modules, Z_{qc} the category of quasi-coherent \mathcal{O}_Z -modules, and Z_c the category of coherent \mathcal{O}_Z -modules.

In the problems that follow, for simplicity we assume all schemes/rings mentioned are noetherian, unless we specifically say something otherwise. Rings mean commutative rings with multiplicative identity 1, and modules are unital (i.e. $1 \cdot x = x$ for elements x in the module).

A complex C^{\bullet} in an abelian category \mathscr{A} is bounded if there exist $l, t \in \mathbb{Z}$ with $l \leq t$ such that $C^{i} = 0$ for $i \notin [l, t]$. It is said to be bounded above if there exists $t \in \mathbb{Z}$ such that $C^{j} = 0$ for j > t, and it is bounded below if there exists $l \in \mathbb{Z}$ such that $C^{j} = 0$ for j < l. Clearly C^{\bullet} is bounded if and only if it is bounded above and below.

Flatness. Let A be a ring.

- 1. Suppose C^{\bullet} is a bounded exact complex of A-modules, with $C^m = 0$ for m < l, and C^m flat for m > l. Show that C^l is flat. [Remark: You might think, from the way the problem is stated, that one only needs C^{\bullet} to be bounded below. However, to begin a descending induction, you need C^{\bullet} to be bounded above too.]
- **2**. Let $\varphi: M^{\bullet} \to F^{\bullet}$ is a quasi-isomorphism of bounded complexes of A-modules with $M^m = F^m = 0$ for m < l for some integer l. Suppose F^{\bullet} is a flat complex and M^m is flat for all m > l. Show that M^l is flat.
- **3.** Suppose F^{\bullet} is a bounded complex of flat modules. Assume (for simplicity) that $F^m = 0$ for m < 0. Let $\varphi \colon P^{\bullet} \to F^{\bullet}$ be a quasi-isomorphism of flat complexes, with P^{\bullet} bounded above. Show that there is a flat complex Q^{\bullet} with $Q^m = 0$ for m < 0, $Q^m = P^m$ for m > 0, and a quasi-isomorphism $\psi \colon Q^{\bullet} \to F^{\bullet}$ such that $\psi^m = \varphi^m$ for m > 0. [Hint: Let $K = \ker(\partial_P^0) \cap \ker(\varphi)$ where $\partial_P^m \colon P^m \to P^{m+1}$, $m \in \mathbb{Z}$ are the coboundary maps on P^{\bullet} . Set $Q^0 = P^0/K$.]
- 4. P^{\bullet} be a bounded complex of finitely generated projective A-modules with $P^m = 0$ for m < 0.
 - (a) Show that there exists a finitely generated module Q such that we have a functorial isomorphism $\mathrm{H}^{0}(P^{\bullet} \otimes_{A} M) \xrightarrow{\sim} \mathrm{Hom}_{A}(Q, M)$ for all $M \in \mathrm{Mod}_{A}$. [**Hint:** Q is the cokernel of the transpose of a certain map of projective modules.]

(b) Show that Q as above is projective if and only if the natural map $\mathrm{H}^{0}(P^{\bullet}) \otimes_{A} M \to \mathrm{H}^{0}(P^{\bullet} \otimes M)$ is an isomorphism for all $M \in \mathrm{Mod}_{A}$. Show also that this happens if and only $\mathrm{H}^{0}(P^{\bullet})$ projective.