HW 2

Due on Jan 20, 2020 (via moodle by 2 pm).

For a commutative ring A, Mod_A denotes the category of A-modules.

For a topological space X, $\mathfrak{Psh}(X)$ will denote the category of pre-sheaves on X, and $\mathfrak{Sh}(X)$ the category of sheaves on X.

For any scheme Z, $\mathcal{A}(Z)$ will denote the category of \mathcal{O}_Z -modules, Z_{qc} the category of quasi-coherent \mathcal{O}_Z -modules, and Z_c the category of coherent \mathcal{O}_Z -modules.

One important fact that is always useful when one works with noetherian hypotheses: If Z is a noetherian scheme and \mathscr{I} is an injective object in Z_{qc} , then it is an injective object in $\mathcal{A}(Z)$, and hence is *flasque*, i.e. given an open set U of Z, the restriction map $\mathscr{I}(Z) \to \mathscr{I}(U)$ is surjective. Flasque sheaves are acyclic (as we will see in another set of HW problems later in the course) for the global sections functor $\Gamma(Z, -)$, and hence are enough to compute cohomology of sheaves. The last half sentence means the following: If $\mathscr{F} \in Z_{qc}$, with Z noetherian, then $\mathrm{H}^i(Z, \mathscr{F})$ can be computed using the formula $\mathrm{H}^i(Z, \mathscr{G}) = \mathrm{H}^i(\Gamma(Z, \mathscr{I}^{\bullet}))$, where $\mathscr{F} \to \mathscr{I}^{\bullet}$ is an injective resolution of \mathscr{F} in the category Z_{qc} . We point out that an injective object in Z_{qc} need not be an injective object in $\mathcal{Sh}(Z)$, and therefore the previous statement is significant.

Quasi-compact and quasi-separated maps. Some definitions (not all of which are in Hartshorne) are in order. A topological space is quasi-compact if every open cover has a finite subcover. An affine scheme is always quasi-compact. If such a space is Hausdorff it is called *compact*. A map of $f: X \to Y$ spaces is quasicompact if there is a cover $\{V_{\alpha}\}$ of Y by affine open subschemes such that $f^{-1}(V_{\alpha})$ is quasi-compact for all indices α . A map of schemes $f: X \to Y$ is quasi-separated if the diagonal map $\Delta_{X/Y}: X \to X \times_Y X$ is quasi-compact. A scheme X is quasiseparated if the canonical map $X \to \text{Spec } \mathbb{Z}$ is quasi-separated,. A separated map is quasi-separated. It is worth emphasising that all these properties just describes are stable under arbitrary base changes.

In Problem **3**. you may use the fact that if $f: X \to Y$ is a quasi-compact, quasi-separated map of schemes, then the higher direct images $\mathbb{R}^i f_* \mathscr{F}$ of a quasicoherent sheaf \mathscr{F} are quasi-coherent. You may also assume that if a scheme X is quasi-compact and quasi-separated, and U is a quasi-compact open subscheme of X, then a given $\mathscr{G} \in U_{qc}$, there exists $\mathscr{F} \in X_{qc}$ such that $\mathscr{G} = \mathscr{F}|_U$.

Higher direct images. Recall that if $f: X \to Y$ is a continuous map between topological spaces, $f_*: \mathcal{Sh}(X) \to \mathcal{Sh}(Y)$ is the functor described by $f_*(\mathscr{F})(V) = \mathscr{F}(f^{-1}(V))$ for every open set V in Y, where $\mathscr{F} \in \mathcal{Sh}(X)$. The functor f_* is called the *direct image functor of* f and $f_*\mathscr{F}$ the *direct image of* \mathscr{F} . It is easy to see that (a) in fact $f_*(\mathscr{F}) \in \mathcal{Sh}(X)$ (a priori it lies in $\mathcal{Psh}(X)$), and (b) f_* is left exact. The *higher direct image* $\mathbb{R}^i f_*, i \geq 0$, of f are the right derived functors of f_* . In other words, for $\mathscr{F} \in \mathcal{Sh}(X)$, and $i \geq 0$, $\mathbb{R}^i f_*\mathscr{F} = \mathbb{H}^i(f_*\mathscr{I}^{\bullet})$, where \mathscr{I}^{\bullet} is an injective resolution of \mathscr{F} . 1. Let $f: X \to Y = \text{Spec } A$ be a quasi-compact, quasi-separated map of noetherian schemes (note that Y is affine). Let $\mathscr{F} \in X_{qc}$. Show, without using spectral sequences, that the sheaf on Y associated to the A-module $H^i(X, \mathscr{F})$ is $\mathbb{R}^i f_* \mathscr{F}$ for all *i*. This amounts to showing that $\Gamma(Y, \mathbb{R}^i f_* \mathscr{F})) = H^i(X, \mathscr{F})$. [Hint: Use the fact that $\Gamma(Y, -): X_{qc} \to \text{Mod}_A$ is an equivalence of categories, since Y is affine. The pseudo-inverse to this functor is (-).]

Affine maps. A map of schemes $h: X \to Y$ is said to be *affine* if $h^{-1}(V)$ is an affine open subscheme of X for every affine open subscheme V of Y.

- **2**. Show:
 - (a) A closed immersion of schemes is an affine map.
 - (b) An affine map is quasi-compact and separated.
 - (c) A separated map is quasi-separated.
- **3**. Show that the following are equivalent for a map of schemes $h: X \to Y$, where X is quasi-compact and quasi-separated.
 - (a) h is affine.
 - (b) $h_*: X_{qc} \to \mathcal{A}(Y)$ is exact.
 - (c) $\mathrm{R}^{i}h_{*} \colon X_{qc} \to \mathcal{A}(Y)$ is zero for $i \geq 1$.
- 4. Part (b) below may not be so well known to you. Use the fact that under the hypotheses of that problem, the natural map $X \times_S X \to X \times_{\mathbf{Z}} X$ is a closed immersion. And to see the latter, note that the just mentioned natural map is the base change of the map $S = S \times_S S \to S \times_{\mathbf{Z}} S$ via the map $X \times_{\mathbf{Z}} X \to S \times_{\mathbf{Z}} S$ (details are left to you).
 - (a) Let X be a separated scheme. Show that the intersection of two affine open subschemes of X is again an affine open subscheme.
 - (b) Suppose $f: X \to S$ is separated, with S a separated scheme. Let U = Spec A be an affine open subscheme of X with $i: U \to X$ the open immersion. Show that i is affine.

The box tensor product \boxtimes . Let k be a field, and X and Y k-schemes. Consider the cartesian square (the square box at the centre of the square is a way of indicating that the square is cartesian):

$$(*) \qquad \begin{array}{c} X \times_k Y \xrightarrow{p_2} Y \\ p_1 & \Box \\ X \xrightarrow{p_1} & \text{Spec } k \end{array}$$

Let $\mathscr{F} \in X_{qc}$ and $\mathscr{G} \in Y_{qc}$. Define the box tensor product $\mathscr{F} \boxtimes \mathscr{G}$ of \mathscr{F} and \mathscr{G} by the formula

(1)
$$\mathscr{F} \boxtimes \mathscr{G} := p_1^* \mathscr{F} \otimes_{\mathscr{O}_{X \times kY}} p_2^* \mathscr{G}.$$

Let X, Y, \mathscr{F} , and \mathscr{G} be as above for the problems this section.

- 5. Suppose X and Y are affine schemes, and suppose $M = \Gamma(X, \mathscr{F}), N = \Gamma(Y, \mathscr{G})$. Show that $\mathscr{F} \boxtimes \mathscr{G} = \widetilde{M \otimes_k N}$.
- **6**. Suppose $\mathscr{F} \to \mathscr{C}^{\bullet}$ and $\mathscr{G} \to \mathscr{D}^{\bullet}$ are resolutions of \mathscr{F} and \mathscr{G} in X_{qc} and Y_{qc} respectively. Show

- (a) $\mathscr{F} \boxtimes \mathscr{G} \to \mathscr{F} \boxtimes \mathscr{D}^{\bullet}$ is a resolution of $\mathscr{F} \boxtimes \mathscr{G}$.
- (b) $\mathscr{F} \boxtimes \mathscr{G} \to \mathscr{C}^{\bullet} \boxtimes \mathscr{D}^{\bullet}$ is a resolution of $\mathscr{F} \boxtimes \mathscr{G}$.

[**Hint:** Reduce to X and Y affine. Then use results about double complexes from the previous HW.]

Čech complexes and the box tensor product. In the problems below, we use the following notation. Let Z be a scheme, U an open subscheme of Z, and $i: U \to Z$ the resulting open immersion. For $\mathscr{H} \in Z_{qc}$ we write $_{U}\mathscr{H}$ for the direct image under i of $\mathscr{H}|_{U}$. Thus

$$\mathcal{H} = i_* i^* \mathcal{H}.$$

For an open cover $\mathfrak{U} = \{U_{\alpha}\}$ of Z, and and sequence of indices $\boldsymbol{\mu} = (\mu_0, \ldots, \mu_p)$ from the index set of the cover \mathfrak{U} , set $U_{\boldsymbol{\mu}} = U_{\mu_0} \cap \cdots \cap U_{\mu_p}$, and $|\boldsymbol{\mu}| = p$. It is then clear that the p^{th} term of the sheaf Čech complex $\mathscr{C}^{\bullet}(\mathfrak{U}, \mathscr{H})$ is given by

$$\mathscr{C}^p(\mathfrak{U}, \mathscr{H}) = \bigoplus_{|\boldsymbol{\mu}|=p} {}_{U_{\boldsymbol{\mu}}}\mathscr{H}.$$

Hypotheses: We will be assuming that we are given the cartesian diagram (*) above. We further assume $X \to \operatorname{Spec} k$ and $Y \to \operatorname{Spec} k$ are separated and of finite type (though, everything goes through if you just assume they are separated and quasi-compact). The finite type hypothesis ensures that two these k-schemes are noetherian.

Fix open covers \mathfrak{U} of X and \mathfrak{V} of Y. In what follows, as before $\mathscr{F} \in X_{qc}, \mathscr{G} \in Y_{qc}$.

- 7. If \mathfrak{U} consists affine open subschemes of X, show that $\mathscr{C}^{\bullet}(\mathfrak{U}, \mathscr{F})$ is a $\Gamma(X, -)$ -acyclic resolution of \mathscr{F} . Conclude that the natural maps $\check{\mathrm{H}}^{n}(\mathfrak{U}, \mathscr{F}) \to \mathrm{H}^{n}(X, \mathscr{F})$ is an isomorphism for every n.
- 8. Show that $\mathscr{C}^{\bullet}(\mathfrak{U}, \mathscr{F}) \boxtimes \mathscr{C}^{\bullet}(\mathfrak{V}, \mathscr{G})$ is a resolution of $\mathscr{F} \boxtimes \mathscr{G}$.
- **9**. Suppose \mathfrak{U} and \mathfrak{V} consist of affine open subschemes of X and Y respectively.
 - (a) Show that $\Gamma(X \times_k Y, \mathscr{C}^{\bullet}(\mathfrak{U}, \mathscr{F}) \boxtimes \mathscr{C}^{\bullet}(\mathfrak{V}, \mathscr{G})) = C^{\bullet}(\mathfrak{U}, \mathscr{F}) \otimes_k C^{\bullet}(\mathfrak{V}, \mathscr{G}).$ [**Hint:** It may be easier to first show that if U and V are affine open subschemes of X and Y respectively, then $\Gamma(X \times_k Y, _{U \times_k V}(\mathscr{F} \boxtimes \mathscr{G})) = \mathscr{F}(U) \otimes_k \mathscr{G}(V).$]
 - (b) Show that $\mathscr{C}^{\bullet}(\mathfrak{U}, \mathscr{F}) \boxtimes \mathscr{C}^{\bullet}(\mathfrak{V}, \mathscr{G})$ is a $\Gamma(X \times_k Y, -)$ -acyclic resolution of $\mathscr{F} \boxtimes \mathscr{G}$.
- 10. Prove the Kunneth formula

$$\mathrm{H}^{n}(X \times_{k} Y, \mathscr{F} \boxtimes \mathcal{G}) \xrightarrow{\sim} \bigoplus_{i+j=n} \mathrm{H}^{i}(X, \mathscr{F}) \otimes_{k} \mathrm{H}^{j}(Y, \mathscr{G}) \qquad (n \geq 0).$$