The Petersen graph
Consider the Petersen graph below

Que checks easily that

1. it has 10 vertices and 15 edges.
2. every vertex has degree 3 .
3. It is connected
4. It has no cycles of length 3 or 4 . All cycles are of length 5 or more.
Lou these obsewations int is not hond to see that it is not hamiltonian. To see this let G denote the Petersen graph, and suppose it has hamiltonian cycle $\sigma=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{1}, x_{10}\right)$. We have to derive a contradiction.

The cycle only accounts for 10 vertices. We need 5 move vertices. Moreover, since each vertex of G hare degree 3 , we need one edge more for each of the vertices. Let e_{i} be the edge incident to x_{i} not
traversed by σ. Consider the possibilities for e_{1}. Since G has no cycles of length 3×4, the only possibilities for e_{1} are $x_{1} x_{5}, x_{1} x_{6}$ and $x_{1} x_{7}$. The same reasoning shows that each e_{i} hae only three possibilities.

The dotted lines ane the only possibilities for e_{1}.
I. The care $e_{1}=x_{1} x_{5}$: There are there possibilities for e_{2}, as cholon by the doltet lives on the pictine on the right.

The subcare $e_{2}=x_{2} x_{6}$: In this care $\left(x_{1}, x_{2}, x_{6}, x_{5}\right)$ in a 4-cycle, which is not possible.

The subcase $e_{2} \neq x_{2} x_{2}$: We consider e_{6}.

The dotted lives on the picture on the left give the possibilities for e_{6}. Since $e_{2} \neq x_{2} x_{6}$, therefore $e_{6} \neq x_{6} x_{2}$. It cannot be $x_{6} x_{1}$ ether, for then $\operatorname{deg}\left(x_{1}\right) \geqslant 4$, which is not possible. This leaves $e_{6}=x_{6} x_{10}$ as the only possibility. In this case $\left(x_{1}, x_{10}, x_{6}, x_{3}\right)$ is a 4-cycle, which is also not possible.
Lon our analysis of the two subecues above we conclude that the case $e_{1}=x_{1} x_{5}$ is not possible.
II. The care $e_{1}=x_{1} x_{7}$: This care is the mirror image of case I_{s} and hance, by symmetry, is not possible.
III. The case $e_{1}=x_{1} x_{6}$: Once again consider the possibiblies fer e_{2} as shown in the picture below.

If $e_{2}=x_{2} x_{6}$, then deg $x_{6} \geqslant 4$, which is not possible. If $e_{2}=x_{2} x_{7}$, then $\left(x_{1}, x_{6}, x_{7}, x_{2}\right)$ is a 4-cycle in G, which to is not possible. This leaves us with only one subcase, namely $e_{2}=x_{2} x_{8}$.

So suppose $e_{1}=x_{1} x_{6}$, and

$e_{2}=x_{2} x_{8}$. There are three possibilities for e_{7}, and these are show via dotted lives on the picture on the left.

The possibilities $e_{7}=x_{7} x_{1}$ and $e_{7}=x_{7} x_{2}$ are eliminated via degree considerations. If $e_{7}=x_{7} x_{3}$ then $\left(x_{2}, x_{8}, x_{7}, x_{3}\right)$ is a 4-cycle in G, which is impossible.
Thus none of the possibilities in case III are actual possibititiss.

The conclusion is that there is no 10 -cycle in G. It follows that titre Petersen graph is not hamiltonian.

The following tree gives the structure of the prof and the various cases and sub-cases. The reason for the impossibility of a route is given at the bottom of each conte of cars, submerses and ent-subcases taken.

