From Lecture 8 notes

Taro vertices are neighbours of they are adjacent lie. There is an edge joining the em. The neighbourhood of a venter is all the vertices which are its neighbours. In the picture above $\{c, f\}$ is the neighbourhood of d and the neighbourhood of g is empty.

Let $G=(V, E)$ be a graph and v a vertex of G.
$\rightarrow \operatorname{deg}_{G}(v):=\#$ of edges of G incident to v.
= \# muster of edges in its reoghbourhool.
degree of v.

When $G=(V, E)$ and $H=(W, F)$ are graphs, we say H is a subgraph of V if $W \subset V$ and $F \cdot C E$

Example: In any finite graph, there are at least 2 distinct vertices of the same degree.

Roo:

$$
\begin{aligned}
\operatorname{deg}_{G}(x) & \leq|v|-1 \text {. So } \\
& \operatorname{dog}_{G}
\end{aligned}: V \longrightarrow[|v|-1] . . ~ \$
$$

By the Pigeonhole principle deg_{G} is not injective.

Remark: This is the similar to the example of there being 2 people with the same \# of friends in a group of n people.

Theorem: (The thondshake Theorem) Let $G=(V, E)$ be a graph. Then

$$
\sum_{v \in V} \operatorname{deg}_{G}(v)=2|E|
$$

Proof:
Every edge is incident on two vertices, and contributes thrice to the sum of the degrees.

Corollary: The number of vertices of odd degree is even.
Poof: Let V_{0} be the set of vertices of odd dequec and V_{e} the set of varices wilt even dequee. Then

$$
\begin{aligned}
& 2|E|=\sum_{v \in U} \operatorname{deg}(v)=\sum_{v \in V_{0}} \operatorname{deg}(v)+\sum_{v \in V_{e}} \operatorname{deg}(v) \\
& \Rightarrow \quad \sum_{v \in V_{0}} \operatorname{deg}(v)=2|E|-\sum_{v \in V_{e}} \operatorname{deg}(v) \quad \text { even number }
\end{aligned}
$$

Thus $\sum_{v \in V_{0}} \operatorname{deg}(v)$ is an even number. But each term in the sum is odd. Since the sum of two odd numbers is even and the sum of an od number with an even number is odd, it is easy to see that the number of terms in the sum must be even.

Definitions: Let $G=(V, E)$ be a graph. A walk in G is a sequence of vertices $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that $x_{i} x_{i+1}$ is an edge for $1 \leq i \leq n-1$. A path is a walk in which all vertices are distinct. A cycle is a path $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sqrt{w_{i t h} n n_{3}}$ such that $x_{n} x_{1}$ is an edge. A belter definition of a cycle is a walk $\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right)$ such that $\left(x_{1}, \ldots, x_{n}\right)$ is a path and $x_{n+1}=x_{2}$.

The length of a vale is the number of edges in it.
Thus the length of $\left(x_{1}, \ldots, x_{n}\right)$ is $n-1$.

It is easy to see the following

- length of $P_{n}=n-1$
- length of $C_{n}=n$
- A patter $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ has length $n-1$
- A cycle $\left(x_{1}, x_{2}, \ldots, x_{n}, x_{1}\right)$ has length n.
- A path of length o $n-1$, regarded as a subgraph, is isomorphic to P_{n}.
-A cycle of length n, regarded as a subgraph, is isomorphic to C_{n}.

Definition: A graph $G=(V, E)$ is connected if for all $x, y \in V, x \neq y$, Atvere is a path starting at x and ending at y.

This is not connected. Had the dotter live been an edge then the graph would have been connected.

Definition: A connected component of a graph $G=(V, E)$ is maximal connected enbgraph H of G, ie., if H^{\prime} is a connected subgraph of G which has H as a subgraph $\left(H \subseteq H^{\prime} \subseteq G\right)$ then $H^{\prime}=H$.

It is dear that G breaks up into convected components, and G is connected if and only if it has only one convected component.
prove this yourself.

There are two connected components in this picture. One is

$$
(\{a, b, c, d, e f\},\{a b, a c, b e, c d, d e, d f\})
$$

and the other is $(\{g\}, \phi)$.

Eulerian graphs
Fix a graph $G=(V, E)$ in the discussion that follows.
Circuits vs cycles: A circuit is a walk $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ with $x_{n+1}=x_{1}$ such that all edges $x_{i} x_{i+1}, i=1, \ldots, n+1$, are distinct. Note that n must be greater than or equal to 3 . A cycle is a circuit $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ such that $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a patti, it. such that $x_{1}, x_{2}, \ldots, x_{n}$ are distinct (and of course, $x_{n+1}=x_{1}$).

We say that a walk $\sigma=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ traverses an edge $e \in E$ if e is one of the edges $x_{i} x_{i+1}, i=1, \ldots, n$.

It is clear that if $\sigma=\left(x_{1}, \ldots, x_{n}\right)$ is a path, then regarding σ as the subgraph:

$$
H=\left(\left\{x_{1}, \ldots, x_{n}\right\},\left\{x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}\right\}\right)
$$

A G, σ is isoumonpluic to P_{n}.
Similar ally if $n \geqslant 3$ and $\sigma=\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right)$ is a cycle, then σ is isomorphic to C_{n}.

If is dear that every circuit breaks up into cycles. I will leave the proof to you. The picture below gives an example of this phemmenon.

In the above picture, σ is a circuit and σ_{1} and σ_{2} are cycles which "add" up to σ.

Definition: A graph $G=(V, E)$ is called eulerion if it is either a graph with only one vertex or it has a circuit which traverses every edge in G exactly once.

Avo note that an enterian graph $G=(V, E)$ is necessarily finite, ie. the set V is a finite set.

From now on, for the rest of the course, antes otherwise stated, we will assume all graphs are finite.

Theoven: A graph $G=(U, E)$ is eulerion if and only if it is connected and the degree of every vertex in G is an even number.

Prong: The care where G has only one vertex is trivial and there is nothing to prove. From now on we assume that $|U|>1$ in the proof.

Suppose $G=(V, E)$ is eulerian. Since there is a circuit which traverses every edge, it is clear that any two vertices are convected by a patti. In greater detial, suppose $\sigma=\left(x_{1}, \ldots, x_{n+1}\right)$ is a circuit which travels every edge. Let $a, b \in V, a \neq b$. Then there is an i and $a j$ such that $a=x_{i}$ ant $b=x_{j}$. We may assume $i<j$. Then the walk $\left(x_{i}, x_{i+1}, \ldots, x_{j}\right)$ is walk which connects a and b. By discarding all the cycles which occur in the walk, we get a path joining a to b. Thus G is connected.

Next suppose $a \in V$, say $a=x_{i}$. Then the two edges $x_{i-1} x_{i}$ and $x_{i} x_{i+1}$ are incident on a $($ of $i=n+1$, then take $x_{i+1}=x_{1}$). If a is repeated in the circuit in σ, then for each occurrence of a in σ, we have two edges incident to a. Hence the degree of a has to be even.

We will prove the remaining part of the theorem (namely the connuse of what we proved) in the next lecture.

