Oct 11, 2022

Lecture 9

MAT 344

From Lecture 8 notes c d g Two vertices are neighbours of they are adjacent (i.e. there is an edge joining itsen. The neighbourhood of a vertex is all the vertices which are ite neighbours. In the picture above {c,f} is the neighbourhood of d and the neighbourhood of g is empty. Let G=(V,E) be a graph and v a vertex of G. deg(v) := # of edges of G incident to v.= # munter of edges in its nevelwourhood. degree of v. When Gr = (V, E) and H = (W, F) are graphs, we say H is a subgraph of Vig WCV and F'CE Example: In any finite graph, there are at least 2 distinct retices of the same dequee. Rol: deg (2) 5 /1/-1. So dig : $V \longrightarrow [|v|-1]$. By the Rigionhole principle deg is not injective. Pernant: This is the similar to the example of there being 2 prople with the same # of finends in a group of a people.

Theorem: (The Handdarke Theorem) Let
$$G = (V, G)$$
 be a graph. Then
 $\sum_{v \in V}^{-1} d_{G_{i}}(v) = 2|E|$.
Prof:
Every edge is invident on two vertices, and entributes twice to the
from of the degrees. If
Coollary: The number of vertices of odd degree is even.
body: Use Vo be the set of vertices of odd degree one Ve the
set of vertices with one degree. Then
 $2|E| = \sum_{v \in V} d_{eg}(v) = \sum_{v \in V_{i}} d_{eg}(v) + \sum_{v \in V_{i}} d_{eg}(v)$
 $\Rightarrow \sum_{i} d_{eg}(v) = 2|E| - \sum_{v \in V_{i}} d_{eg}(v)$ over number
 $v \in V_{i}$ deg (v) is an one number. But each term in the
 $v \in V_{i}$ deg (v) is an one number. But each term in the
set z_{i} and z_{i} the that the number of terms in the degree
 $v \in V_{i}$ deg (v) is an odd number. But each term in the
set z_{i} deg (v) is an odd number with an one number z_{i} odd,
wit is easy to see that the number of terms in the degree
 z_{i} deg (v, G) be a graph. A walk in G is a
sequence of vertice $(z_{i}, z_{i}, ..., z_{i})$ such that $z_{i} z_{i}$ is an edge
for $1 \le i \le n-1$. A path is a walk in which all vertices are disting to.
A give is a path $(z_{i}, z_{i}, ..., z_{i})$ such that z_{i} is an edge.
A belter difficution of a cycle is a walk in the degree is the degree.
A belter difficution of a cycle is a walk in the degree is $(z_{i}, z_{i}, ..., z_{i})$ such that z_{i} degree is z_{i} .

requirement may Eulerian graphs not be standard. Inst for this Fix a graph G= (V,E) in the discussion that follows. come Circuits vs cycles: A circuit is a walk (21, 22,..., 2n+1) with Xny= X, such that all edges xixin, i=1,...,n+1, are distinct. Note that a must be greater than or equal to 3. A cycle is a circuit (x1, 22, ..., Xn+1) such that (x1, 22, ..., Xn) is a path, i.e. such that x1, x2, ..., xn are distinct (and of courle, $\chi_{n+1} = \chi_1$). he say that a walk o = (x1, x2, ..., xn) traverses an edge e e E if e is one of the edges zizi+1, i=1,...,n. It is clean that if $\sigma = (x_1, \dots, x_n)$ is a path, then regarding or as the subgraph: $H = \left(\{ z_1, ..., z_n \}, \{ z_1, z_2, z_2, z_3, ..., z_{n-1}, z_n \} \right)$ A G, J is isomerphic to Pr. Similarly if n=3 and $\sigma = (x_1, x_2, ..., x_n, x_{n+1})$ is a cycle, en σ is isomorphic to C_n . then o is isomorphic to Cn. It is clean that every circuit breaks up into cycles. I will leave the proof to you. The picture below gives an example of this phennenen. In the above picture, σ is a circuit and σ_i and σ_2 are cycles which "add" up to σ .

Definition: A graph G=(V,E) is called <u>enterion</u> if it is either a graph with only one vertex or it has a circuit which traverses every edge in G exactly once Also note that an enlerian graph G = (V, E) is necessarrily finite sie. the set V is a finite set. From now on, for the rest of the course, unless otherwise stated, we will assume all graphs are finite. Theorem: A graph G = (V, E) is enterion if and only if it is connected and the degree of every vertex in G is an even number. those: The case where G has only one vertex is trivial and there ie nothing to prove. From none on we assume that 1V1>1 in the proof. Suppose G=(V,E) is enterior. Since there is a circuit which traverses every edge, it is clear that any two vertices are connected by a patter. In greater detail, suppose σ = (x, ,..., x, ,) is a circuit which traverse every edge. Let a, b ∈ V, a ≠ b. Then there is an i and a j such that a= n; and b= x; we may assume icj. Then the walk (ri, ri+1, ..., rj) is walk which connects a and b. By discarding all the cycles which occur in the walk, we get a path joining a to b. Thus Gr is connected. Next suppore a EV, say a= zi. Then the two edges xi-1 xi and xixit are incident on a (if i = n+1, then take $x_{i+1} = x_1$). If a is repeated in the circuit in σ_1 then for each occurrence of a in J, we have two edges invident to a. Hence the degree of a has to be even. We will prove the remaining part of the theorem (namely the convuse of what we proved) in the next lecture.