5.1 Basic Notation and Terminology for Graphs

A graph books like this (formal definition after pictures)

Vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$

$$
V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}
$$

Edges All the lives and curves in the picture

$$
E=\left\{\begin{array}{l}
v_{1} v_{2}, v_{2} v_{3}, v_{2} v_{6}, v_{3} v_{4}, \\
v_{3} v_{5}, v_{4} v_{5}
\end{array}\right\}
$$

$$
\text { Graph }=(V, E)
$$

Were are the more formal definitions.
A graph G is a pair (V, E) where V is a set (usually finite) and E is a set of 2 -element subsets of V. Elements of V are called vertices and elements of E are called edges. $V=$ vertex set $; \quad E=$ edge set.
Preferred notation: $x y$ instead of $\{x, y\}$. (Only for graphs!)
Note: $x y=y x$ because $\{x, y\}=\{y, x\}$
If $x y$ is an edge, the vertices x and y are said to be adjacent. The edge $x y$ is said to be incident to x and y

The drawing of a graph is not the same as the graph

Two vertices are neighbours if they are adjacent lie. there is an edge joining the em. The neighbourhood of a venters is all the varices which are its neighbours. In the picture above $\{a, e\}$ is the neighbourhood of d and the neighbourhood of g is empty.

Let $G=(V, E)$ be a graph and v a vertex of G.
$\operatorname{deg}_{G}(v):=\#$ of edges of G incident to v.
= \# muster of edges ins its reoghbourhool.
degree of v.
When $G=(V, E)$ and $H=(W, F)$ ane graphs, we say H is a subgraph of V if $W \subset V$ and $F^{\prime} C E$

Example: In any finite graph, there are at least 2 distinct vertices of the same degree.

Rofl:

$$
\begin{aligned}
\operatorname{deg}_{G}(x) & \leq|v|-1 \text {. So } \\
& \operatorname{deg}_{G}
\end{aligned}: V \longrightarrow[|v|-1] .
$$

By the Pigeonhole principle de_{G} is not injective.
Remark: This is the similar to the example of there being 2 people with the same \# I friends in a group of n people.

Isomorphisms of graphs
Consider the following two (representations) of graplus

$$
V=\{h, i, j, k, l, m, n, 0\}, W=\{p, q, r, s, t, u, v, w\}
$$

These are essentially the same graphs. The correspondence between the varices is as follows.

$$
\dot{i} \longleftrightarrow v
$$

$$
j \longleftrightarrow r
$$

$$
m \longleftrightarrow u
$$

$$
\begin{aligned}
& f(l)=p \\
& f(i)=v \\
& f(j)=r \\
& f(k)=k \\
& f(l)=s \\
& f(m)=u \\
& f(n)=q \\
& f(0)=w
\end{aligned}
$$

$$
l \longleftrightarrow s \quad f(l)=s
$$

The technical term is G and H are isomorphic.
Definition: We say $G=(V, E)$ and $H=(W, F)$ one inouorphic if there is a bijective map $f: V \longrightarrow W$ such that

$$
x y \in E \Leftrightarrow f(x) f(y) \in F
$$

wirtten as $G \cong H$. (Read as G is isomorphic to H).

Note: $\quad a \cong a$

- $a \cong H \Rightarrow H \cong G$
- $a \cong H$ and $H \cong I \Rightarrow G \cong I$.

Isomorphism is an equivalence relation.

Theorem: (The Handshake Theorem) Let $G=(V, E)$ be a graph. Then

$$
\sum_{v \in V} \operatorname{leg}_{G}(v)=2|E| .
$$

Proof:
Every edge is incident on two vertices, and contributes trice to the sum of the degrees.

Corollary: The number of vertices of odd degree is even.
Poof: Let V_{0} be the set of vertices of odd degree and V_{e} the set of vertices wilt even degree. Then

$$
\begin{aligned}
2|E|=\sum_{v \in U} \operatorname{deg}(v)=\sum_{v \in V_{0}} \operatorname{deg}(v)+\sum_{v \in V_{e}} \operatorname{deg}(v) \\
\Rightarrow \quad \sum_{v \in V_{0}} \operatorname{deg}(v)=2|E|-\sum_{v \in V_{e}} \operatorname{deg}(v) \quad \text { even number } \quad \text { since } v \in V_{e}
\end{aligned}
$$

Thus $\sum_{v \in V_{0}} \operatorname{deg}(v)$ is an even number. But each term in the
sum is od. Since the sum of two odd numbers is even and the sum of an od number with an even number is odd, int is easy to see that the number of terms in the sum must be even.

Basic Examples of -graphs
1.

$$
\begin{aligned}
P_{n}=(V, E), \quad V & =\{1,2,3, \ldots, n\} \\
E & =\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}
\end{aligned}
$$

Here are $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ and P_{6}, often in more than one version.

2. $\left.\begin{array}{rl}C_{n}=(V, E), \quad & V=\{1,2, \ldots, n\} \\ & E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\},\{n, 1\}\}\end{array}\right\}$ for $n \geqslant 3$

Pr's given on left of the C_{n} 's for comparison

Definitions: Let $G=(V, E)$ be a graph. A walk in G is a sequence of vertices $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that $x_{i} x_{i+1}$ is an edge for $1 \leq i \leq n-1$. A path is a walk in m which all vertices are distinct. A cycle is a path $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sqrt{\text { with }} \frac{n z_{3}}{s u l h}$ that $x_{n} x_{1}$ is an edge. A better definition of a cycle is a walk $\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right)$ such that $\left(x_{1}, \ldots, x_{n}\right)$ is a path and $x_{n+1}=x_{1}$.

The length of a walk is the number of edges in it.
Thus the length of $\left(x_{1}, \ldots, x_{n}\right)$ is $n-1$.
It is easy to see the following

- length of $P_{n}=n-1$
- length of $C_{n}=n$
- A patter $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ has length n-1
- A cycle $\left(x_{1}, x_{2}, \ldots, x_{n}, x_{1}\right)$ has length n.
- A path of length o $n-1$, regarded as a subgraph, is isomorphic to P_{n}.
- A cycle of length n, regarded as a subgraph, is isomorphic to $C n$.

Definition: A graph $G=(V, E)$ is connected if for all $x, y \in V, x \neq y$, there is a path starting at x and ending at y.

This is not connected. Had the dotted line been an edge then the graph would have been connected.

