4.1 The Pigeon Hole Principle

The basis idea is:
If we put $n+1$ objects in n boxes, there will be a box wort s at least 2 olijenta.

Here ie the formal statement.
Theorem: Let x and y be finite sets such that $|x|>|y|$. If $f: X \longrightarrow Y$ in a function, then there inst distinct elements $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$, ie. f io not infective.

Example: Prove that in a group of n people, thane are at least 2 persons who know exactly the same number of people in that group, assuming that everyone knows at least perron (knowing oneself does not cont)

Solution:
A peron peons at most $n-1$ people.
Let x be the set of people in the group and
let

$$
f: x \longrightarrow[n-1]
$$

be defined by
$f(x)=\#$ q people (in the group) x kurus
Then $\left.|x|=n>n-1=\mid \tau_{n-1}\right] \mid$. By the Pigeon tole Principle, there are distinct people $x, y \in X$ such that $f(x)=f(y)$.

1 and 7 how 2 pesos each. (6 also knows 2 people.)

Proof of the Pigeon Hole principle:

For $y \in Y$, let

$$
X_{y}=\{x \in X \mid \quad f(x)=y\} .
$$

Then $\quad|x|=\sum_{y \in y}\left|x_{y}\right|$.

We have to prove that $\left|x_{y}\right| \geqslant 2$ fer some $y \in Y$. Suppose this is not so. Then

$$
\left|x_{y}\right|<2 \quad \forall y \in 4 .
$$

This means

$$
\left|x_{y}\right| \leq 1 \quad \forall y \in Y
$$

since $|x|=\sum_{y \in y}^{1}\left|x_{y}\right|$, we get

$$
|x|=\sum_{y \in y}\left|x_{y}\right| \leq \sum_{y \in y} 1 \leq|y|
$$

Thus $|x|<|Y|$, contradicting the hypothesis that $|x|>|y|$.
We open write $f^{-1}(y)$ for x_{y}. The set $f^{-1}(y)$ is poem called the incuse image of y undue f.

Theorem (Erdios-Szeberes Thavem): Let $m, n \in \mathbb{N}$. Any sequence of $m n+1$ distinct real numbers either has an in creasing sequence of $m+1$ torms or a decreasing sequence of $n+l$ terms. (Both ave also possible.)

Example: $m=3, n=3, m n+1=a+1=10$

$$
(3,17,4,320,5,33, \sqrt{2}, \pi, 0, e)
$$

$(320,33, \pi, e)$ is a dearening sequence of lengths 4.
Actually in this care, we aho have an incarasing sequence of lengtro 4 , namely $(3,4,5,33)$.

Proof:
Let $\sigma=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{m n+1}\right)$ be a finite sequence of $m n+1$ distinct terms. For all is $\in[m n+1]$, let
$a_{i}=$ maximum mentre of terms in an increasing subsequence of σ wilt x_{i} the first term
$b_{i}=$ maximum member of terms in a de evening subsequence of σ wilt h x_{i} the last term.
We have to show that at least one of the following happens:

- $a_{i} \geqslant m+1$ fer some i;
or - $b_{i} \geqslant n+1$ fer some i
suppose not. Then $a_{i} \leq m$ and $b_{i} \leq n$ for all i.
Let $x=[m n+1]=\{1,2, \cdots, m n+i\}$ and

$$
y=\{(a, b) \mid a, b \in \mathbb{N}, 1 \leq a \leq m, 1 \leq b \leq n\}=[m] \times[u] .
$$

Let $f: x \longrightarrow Y$ be the map

$$
f(i)=(a i, b i) \quad i=1, \ldots, m n+1
$$

Since $|x|=m n+1>m n=|y|$, by the Rigcon Hole principle there exist $i, j \in \tau m n+1]$ with $i<j$ sun h that $f(i)=f(j)$, Fe.

$$
\left(a_{i}, b_{i}\right)=\left(a_{j}, b_{j}\right)
$$

There are two poses bilities.

1. $x_{i}<x_{j}$ and 2 . $x_{i}>x_{j}$.

If $x_{i}<x_{j}$, pick a subsequence $\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{a_{j}}}\right)$ of σ with $x_{i_{1}}=x_{j}$, which is incmaning. This is possible became of the definition of a_{j}. Then the subsignence $\left(x_{i}, x_{i_{1}}, \ldots, x_{i_{a_{j}}}\right)$ is inveresing and has $a_{j}+1=a_{i}+1$ terms $^{x_{j}}$ (wee are using the font that $\left(a_{i}, b_{i}\right)=\left(a_{j}, b_{j}\right)$ whence $a_{i}=a_{j}$ and $\left.b_{i}=b_{j}\right)$. This is not possible by the definition of a_{i}.

If on the otter hand $x_{i}>x_{j}$, we can find a decreasing of σ of length bi whose last term is x_{i}. Adding the term x_{j} at the end of the subsequence, we get a decreasing subsequence of σ I length $b_{i}+1=b_{j}+1$ whore last term is x_{j}. This coutralides the definition of b_{j}. we are thereppe done.

Theorem (The Cienevalized Perigon Hole principle): Let x and y be finite sets with

$$
|x|>(m-1)|y|
$$

for some $m \in \mathbb{N}$. If $f: x \rightarrow y$ is a function, then there exist at least m distinct elements $x_{1}, x_{2}, x_{3}, \ldots, x_{m}$ of x such that $f\left(x_{1}\right)=f\left(x_{2}\right)=\cdots=f\left(x_{m}\right)$.
Proof:
As before, for $y \in 4$, let x_{y} be the inrasse image of y under f, ie.

$$
x_{y}=\{x \in x \mid f(x)=y\} .
$$

We have to show that $\left|x_{y}\right| \geqslant m$ for some $y \in Y$.
Suppose this is not so. This means

$$
\left|x_{y}\right|<m \quad \text { for all } y \in Y
$$

or, equivalently,

$$
\left|x_{y}\right| \leq m-1 \quad \text { for all } y \in Y
$$

Summing one $y \in Y$, we get

$$
|x|=\sum_{y \in Y}\left|x_{y}\right| \leqslant \sum_{y \in Y}(m-1)=|y| \cdot(m-1),
$$

lie. $|x| \leq|y| \cdot(m-1)$. This contradicts the hypothesis of the theovern.

Example (Ramsey's theorem): In a group of 6 people, there is either a set of 3 people who all know o each other, or a set of 3 people none of who know each other. Proof:

Lit the prople be $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$, and x_{6}.
Define a map

$$
f:\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\} \longrightarrow\{0,1\}
$$

by the rule

$$
f\left(x_{i}\right)=\left\{\begin{array}{l}
0 \text { if } x_{1} \text { and } x_{i} \text { do not know each other } \\
1 \text { if } x_{1} \text { and } x_{i} \text { know each other }
\end{array}\right.
$$

Now

$$
\left|\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}\right|>(3-1) .|\{0,1\}| \text { since } 5>(2)(2)=4 \text {. }
$$

The Generalized Pigeon Hole principle applies and we get a subset $\left\{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right\}$ \& $\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$ such that

$$
f\left(x_{i_{1}}\right)=f\left(x_{i_{2}}\right)=f\left(x_{i_{3}}\right)
$$

There one two cases.
Case 1: $\quad f\left(x_{i_{1}}\right)=f\left(x_{i_{2}}\right)=f\left(x_{i_{3}}\right)=1$
Case 2: $\quad f\left(x_{i_{1}}\right)=f\left(x_{i_{2}}\right)=f\left(x_{i_{3}}\right)=0$.
Consider Case 1. Either none of $\left\{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right\}$ kun each other, or at least two of them know each other. In the first case we are done. In the second case, suppress $x_{i_{1}}$ and $x_{i_{2}}$ know each otter. Then $\left\{x_{1}, x_{v_{1}}, x_{i_{2}}\right\}$ is
a subset of 3 persons all of who know each other. So in the event we are in Case, we are done. The picture below may help.
$-=$ friends

- = not friends

Picture for Care 1
x_{2}, x_{4}, x_{6} friends witt x_{1}

Sutcare: None of x_{2}, x_{4}, x_{6} friends with each otter. The sulsd $\left\{x_{2}, x_{4} x_{6}\right\}$ whens.

Sutcere: x_{2} and x_{6} friends with each other. The mesic $\left\{x_{1}, x_{2}, x_{6}\right\}$ warts.

Now suppose we are in Care 2. In this case either all three of $x_{i_{1}}, x_{i_{2}}, x_{i_{3}}$ know each other, or there are two $o f$ them (say $x_{i_{1}}$ and $x_{i_{2}}$) who do not know each other. In the former case, we are done. In the latter care, none of $x_{1}, x_{i_{1}}, x_{i_{2}}$ know earls other So we are done in this case too.

