$\operatorname{Sep} 27 / 28,2022$
Example: You are given 3^{n} coins, all identical except for one which is heavier. Using a balance, prove that yon cam find the heavy coin in n weighings.
Solution.
If $n=1$, we have only 3 coins. Pick any two and compare fAtten on the balance. If the thus coins have the same weight, then the one left out ts the heavicat. Otherwise the balance tells us which is heavier. So one weighing is enough.

We now know o how to work this when $n=1$. Now let us work this ont for $n=2$. We have 9 coins. We can make three piles out of them of three coins earls. Pick any twos piles and compare them in the balance. If they balance, the pile left ont is heaviest. If not, the balance tells us which one is heavier. In either care, after one weighing we have a pile of three coins, identical, except for one coin which is heavier. We have already seen (from the $n=1$ care) that one more weighing and we can identify the heavy coin.

How would you do a pile of $3^{3}=27$ coins? The idea is now clear. Spit it into 3 piles 19 coins each. One weighing tells yon which pile of $q=3^{2}$ coins has the heavy coin. The previous case tells you that 2 further wrighings ant yon have identified the heavy coin. In total, there woighings are enough when $n=3$.

In general, if $n \geqslant 2$, and you have worked ont how to identify the heavy cain for a pile of 3^{n-1} coins in $n-1$ wiggings, then for a pile of 3^{n} coins, yon should break this pile intr 3 piles of 3^{n-1} coins each. In one weighing yon can work out which pile of 3^{n-1} coins has the heavy coin. And since you have worked ant the $n-1$ care, in amothar $n-1$ welghings you are dove.

Example: Lind an upper bound per the sequence $\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \cdots$

Solution:
Since $2 \leqslant 4, \quad \sqrt{2} \leqslant \sqrt{4}=2$.
What about $\sqrt{2+\sqrt{2}}$?
we have $2+\sqrt{2} \leq 2+2=4$, and hence

$$
\sqrt{2+\sqrt{2}} \leq \sqrt{4}=2
$$

What about $\sqrt{2+\sqrt{2+\sqrt{2}}}$?
we have

$$
2+\sqrt{2+\sqrt{2}} \leq 2+2 \leq 4
$$

and hance

$$
\sqrt{2+\sqrt{2+\sqrt{2}}} \leqslant \sqrt{4}=2
$$

If eve contime in this way, it looks very likely that 2 is an upper bound fer the sequence. Here is the basic idea. Let s_{n} be the $n^{t h}$ tern of the sequence. Then

$$
s_{n+1}=\sqrt{2+s_{n}}, \quad n \geqslant 1 .
$$

In ow r calculations above, we first showed $8_{1} \leq 2$. Then wed the fart that $s_{1} \leq 2$ to show that $s_{2} \leq 2$. Ant then we used the fact that $s_{2} \leq 2$ to show that $s_{3} \leq 2$.

In general, suppose we have shown that $s_{k} \leq 2$.
since $\delta_{k+1}=\sqrt{2+\delta_{p}}$, we see that

$$
s_{k+1}^{2}=2+s_{k} \leq 2+2=4
$$

Hence

$$
s_{k+1} \leq 2
$$

The examples above lena to fall elder the following organising principle.

The principle of mattrematical sin auction
Let $S_{1}, S_{2}, S_{3}, \ldots$ be a sequence of statements (e.g. equations) such that
(base case)
S_{1} is true
(Inductive step) $\quad S_{k} \Rightarrow S_{k+1}$ for all $k \in \mathbb{N}$.
Then, S_{n} is true for all $n \in \mathbb{N}$.

The picline A the douninoes above should help with understanding tee principle.

Example: Show that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$, $n \in \mathbb{N}$.
Prof by induction: Let S_{n} be the assertion aline.
The bare cave, when $n=1$, is true because

$$
\sum_{i=1}^{1} i=1=\frac{1(1+1)}{1} \quad S_{1} \text { is true }
$$

$\left.\begin{array}{l}\text { Suppose for some } k \geq 1 \text {, the statement is true for } n=k \text {. } \\ \text { Let un show that } S_{k+1} \text { is true. }\end{array}\right\} \begin{aligned} & \text { Suppose } \\ & S_{k} \text { io true } \\ & \text { for some } k \geqslant 1\end{aligned}$

$$
\begin{aligned}
\sum_{i=1}^{k+1} i & =\left(\sum_{i=1}^{k} i\right)+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1) \quad \text { (since } S_{k} \text { ie true) } \\
& =\frac{k(k+1)+2(k+1)}{2} \\
& =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

This shows that S_{k+2} is bine, fife.

$$
S_{k} \Rightarrow S_{k+1}
$$

By the primiple of induction $S n$ is true $\forall n \in \mathbb{N}$

Example: show that $1+3+5+\ldots+(2 n-1)=n^{2}, n \in \mathbb{N}$.
Solution:
Sn: $1+3+5+\ldots+(2 n-1)=n^{2}$
Have to show S_{n} is true for all $n \in \mathbb{N}$.
Set $n=1$. The L.S. of $S_{n}=1$ \& the R.S. $A_{n} S_{n}=1$. So
S_{1} is true
(base case)
Suppose S_{k} in true for some $k \geqslant 1$.
L.S. of S_{k+1} is

$$
\begin{aligned}
& 1+3+5+\ldots+(2 k-1)+(2 k+1) \\
= & 1+3+5+\ldots+(2 k-1)+(2 k+1) \\
= & k^{2}+(2 k+1) \quad(\text { sine } \\
= & (k+1)^{2} \\
= & \text { R.S. \& } S_{k+1} .
\end{aligned}
$$

$$
=k^{2}+(2 k+1) \quad \text { (since } S_{k} \text { ie tome). }
$$

Thus

$$
S_{k} \Rightarrow S_{k+1}
$$

$$
k \in \mathbb{N} .
$$

By induction, in is tore for all n.

Pictanal prof

$$
\begin{gather*}
1+3+5+7 \\
=16 .
\end{gather*}
$$

Example: Let n be a positive integer. Show that any $2^{n} \times 2^{n}$ chessboard with one square removed cam be tiled using using L-shaped pieces, where these pieces coven three squares at a time.

L-shaped Tile covering 3 squares.

Write ont the solution yourself. The solution was dis arsed in class. Hint: If yon kun how to tile a $2^{n-1} \times 2^{n-1}$ chessboard with a square removed, can you use that knowledge to tile a
$2^{n} \times 2^{n}$ chessboard wilt a square removed?
Sometimes induction is NDT strong enough.
Example: Define $a_{1}, a_{2}, a_{3}, \ldots$ by the recessive relations

$$
\begin{aligned}
& a_{1}=3, \quad a_{2}=5 \\
& a_{n}=2 a_{n-1}-a_{n-2}, \quad n \geqslant 3 .
\end{aligned}
$$

Let we compute a_{3}, a_{2}, a_{5}.

$$
\begin{aligned}
a_{3} & =2 a_{2}-a_{1} \\
& =2(5)-3 \\
& =7 \\
a_{4} & =2 a_{3}-a_{2} \\
& =2(7)-5 \\
& =9 \\
a_{5} & =2 a_{4}-a_{3} \\
& =2(9)-7 \\
& =11
\end{aligned}
$$

$$
\begin{aligned}
& a_{1}=3 \\
& a_{2}=5 \\
& a_{3}=7 \\
& a_{4}=9 \\
& a_{5}=11
\end{aligned}
$$

Pattern suggest that

$$
a_{n}=2 n+1
$$

What is a_{100} ? Chomees are it is $2(100)+1=201$.
Claim: $\quad a_{n}=2 n+1$.
will induction work?
The statement is certainly tome for $n=1$.
Suppose it is true for $n=k$, ie. suppre we know

$$
a_{k}=2 k+1
$$

for come $k \geq 2$. (We know it for $k=1<2$ by inspection.)

$$
\begin{aligned}
a_{k+1} & =2 a_{k}-a_{k-1} \\
& =2(2 k+1)-a_{k-1} \\
& =4 k+2-a_{k-1}
\end{aligned}
$$

What do we do with this?

We are stuck. So the principle of induction (in the form we have given it) does not quite help here.

What if we assumed that for $k \geqslant 2$, the statement is true $n=k$ AND for $n=k-1$?

Let ne do that. We have already seen that

$$
a_{k+1}=4 k+2-a_{k-1} .
$$

Since the statement is assumed true for $n=k-1$ also, the above gives

$$
\begin{aligned}
a_{k+1} & =4 k+2-(2(k-1)+1) \\
& =4 k+2-(2 k-1) \\
& =2 k+3 \\
& =2(k+1)+1 .
\end{aligned}
$$

Which means

$$
\begin{equation*}
S_{k}+S_{k-1} \Rightarrow S_{k+1} \tag{*}
\end{equation*}
$$

Since the statement is true for $n=1 \& 2$, by (x) it is true for $n=3$. Nom the statement is true for $n=2$ and $n=3$. So it must be tone for $n=4$. Continuing this way we see that S_{n} is true for all $n \in \mathbb{N}$.

We clearly need to strengthen our principle of induction in light of the above example.
The strong Principle of Mathematical Induration
Let S_{1}, S_{2}, \ldots, be a sequence of statements such that: (Base care) S_{1} is true,
and for all $k \in N$
(Inductive step) For all $k \in \mathbb{N}, S_{k+1}$ is tome wherever $S_{1}, S_{2}, S_{3}, \ldots, S_{k}$ are true. Then, S_{n} is true for all $n \in \mathbb{N}$.
(uncial induction)

Example: Let

$$
\phi=\frac{1+\sqrt{5}}{2}, \quad \psi=\frac{1-\sqrt{5}}{2} .
$$

(For the record, ϕ is the "golden ratio", and ϕ and ψ are the roots of $x^{2}-x-1$.) Show that

$$
F_{n}=\frac{\phi^{n}-\psi^{n}}{\phi-\psi} \quad, \quad n \in \mathbb{N} .
$$

Fibonacci numb us

$$
F_{n}=F_{n-1}+F_{n-2}, F_{1}=1, F_{2}=1 .
$$

Proof: We will have to use the strong principle in this care tor (try using the usual reasion of induction - you will fail).

The base care is clear.
(Base case) S_{1} is clearly true. The lit side is F_{1} which equals 1, and the right side is $\frac{\phi-\psi}{\Phi-\psi}$ which also equals 1 .

What about $n=2$? Note $F_{2}=1$. On the other hound

$$
\begin{aligned}
\frac{\phi^{2}-\psi^{2}}{\phi-\psi} & =\frac{(\phi-\psi)(\phi+\psi)}{\phi-\psi} \\
& =\phi+\psi \\
& =\frac{1+\sqrt{5}}{2}+\frac{1-\sqrt{5}}{2} \\
& =1 \\
& =F_{2} .
\end{aligned}
$$

So S_{2} is also true.
(induction step) Suppre the formula holds fer $n=1,2,3, \ldots, k$ for some $k \geqslant 2$, ie. S_{1}, \ldots, S_{k} are true for some $k \geqslant 2$. Then

$$
\begin{aligned}
F_{k+1} & =F_{k}+F_{k-1} \quad \text { (we are using } k \geqslant 2 \text { here) } \\
& =\frac{\phi^{k}-\psi^{k}}{\phi-\psi}+\frac{\phi^{k-1}-\psi^{k-1}}{\phi-\psi}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\phi^{k-1}(1+\phi)-\psi^{k-1}(1+\psi)}{\phi-\psi} \\
& =\frac{\phi^{k-1}\left(\phi^{2}\right)-\psi^{k-1}\left(\psi^{2}\right)}{\phi-\psi} \quad\binom{\text { since } \phi \text { and } \psi}{\text { satoly } x^{2}-x-1=0} \\
& =\frac{\phi^{k+1}-\psi^{k+1}}{\phi-\psi}
\end{aligned}
$$

This means S_{k+1} is also tone.
a.e.d.

