Chapter 3 - Induction

Recursion
Example: Define n ! (for $n \in \mathbb{N}$) by

$$
\left.\begin{array}{rl}
1! & =2 \\
n! & =n \cdot(n-1)!\text { for } n>1
\end{array}\right\} \text { Recursive definition. }
$$

Example: Define $F_{1}, F_{2}, F_{3}, \ldots$ (the Fibonacci numbeans) by

$$
\begin{aligned}
& F_{1}=1, F_{2}=1 \\
& \left.F_{n}=F_{n-1}+F_{n-2} \text { for } n>2 .\right\} \text { Recursive def. }
\end{aligned}
$$

$$
\begin{array}{cccccccc}
F_{1} & F_{2} & F_{3} & F_{4} & F_{5} & F_{6} & F_{7} & F_{8} \\
1 & 1 & 2 & 3 & 5 & 8 & 13 & 21
\end{array}
$$

Example: The relation

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \quad(0 \leq k \leq n)
$$

We proved in lecture 2 is a recurrence relation.
The equations

$$
\binom{n}{0}=1, \quad\binom{n}{n}=1, \quad\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

doteruive $\binom{n}{k}$ for all n and $0 \leq k \leq n$.

Example (Catalan numbers): The relation

$$
\left.\begin{array}{l}
T_{0}=1 \\
T_{n+1}=\sum_{k=0}^{n} T_{k} T_{n-k}
\end{array}\right\}
$$

is a recurrence relation.

$$
\begin{array}{ll}
n=0 & T_{1}=\sum_{k=0}^{0} T_{k} T_{0-k}=T_{0} T_{0}=1 . \\
n=1 & T_{2}=\sum_{k=0}^{1} T_{k} T_{1-k}=T_{0} T_{1}+T_{1} T_{0}=1+1=2 . \\
n=2 & T_{3}=\sum_{k=0}^{2} T_{k} T_{2-k}=T_{0} T_{2}+T_{1} T_{1}+T_{2} T_{0}=2+1+2=5 . \\
&
\end{array}
$$

Lattice patters help solve the problem. Let us use diagonal patters, for no particular season except for variation. Recall that diagonal lattice paris composed of moves which are either north east moves (comenponding to vertical moves in the usual lattice paths) and south enact moves (compounding to horizontal moves in the nounal lattice paths). Que can move bark and froth belwieen diagonal and usual lattice paths by using the transformations

$$
\begin{aligned}
& {\left[\begin{array}{l}
p \\
q
\end{array}\right] \longmapsto \frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
p \\
q
\end{array}\right] \quad \text { (diagonal to nounal) }} \\
& {\left[\begin{array}{l}
m \\
n
\end{array}\right] \longmapsto\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
m \\
n
\end{array}\right] \quad \text { (usual to diagonal). }}
\end{aligned}
$$

It is easy to see that points of the (m, m) in usual patters comerpout to points of tho form $(2 \mathrm{~m}, 0)$ in diagonal palters and vice-versa.
Catalan or Dale patters in the diagonal world are defined to be patters from $(0,0)$ to $(2 n, 0)$ which never dip bow the x-axis.

Diagonal pelts \longmapsto Usual lattice path
Let $(2 l, 0)$ be the first time after $(0, D)$ that a Catalan path lints the x-axis. This means that from $(1,1)$ to $(2 l-1,1)$ our Catalan path lies above the line $y=1$ (the green horizontal line). This is essentially a Catalan patter from $(0,0)$ to $(2 l-2,0)$. (Shift the origin $t ~(1,1)$.) Here $1 \leq l \leq n$. The path from $(2 l, 0)$ to $(2 n, 0)$ is essentially a Catalan pats from $(0,0)$ to $(2 n-2 l, 0)$.

FIGURE: A Catalan $(r \times P y(k)$ path from $(0,0)$ to $(2 n, 0)$. The first time it hits the x-axis apter $(0, D)$ is at $(2 l, D)$.

It follows that for $1 \leq l \leq n$, the number of Catalan paths form $(0,0)$ to $(2 n, 0)$ which lint the x-axis for the first time $(2 l, 0)$ (after $(0,0)$) is is $C_{l-1} \cdot C_{n-l}$ where $C_{i}=\frac{1}{i+1}\binom{2 i}{i}$.

We therefore have

$$
c_{n}=\sum_{l=1}^{n} c_{l-1} \cdot c_{n-l}
$$

Setting $k=l-1$ in the above, so that $l=k+1$, and $0 \leq k \leq n-1$, we get

$$
C_{n}=\sum_{k=0}^{n-1} c_{k} \cdot c_{n-k-1}
$$

ant hance

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} \cdot C_{n-k}, \quad C_{0}=1 .
$$

Thus the Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ satisfy our original recurrence relation

$$
\begin{equation*}
T_{n+1}=\sum_{k=0}^{n} T_{k} T_{n-k}, \quad T_{0}=1 . \tag{x}
\end{equation*}
$$

Since (*) has a unique solution, we have pooed the the only solution of (x) is

$$
T_{n}=\frac{1}{n+1}\binom{2 n}{n}, n \geqslant 0 .
$$

This gives us a recursive definition of catalan numbers, namely the set I mumbler $c_{0}, c_{1}, c_{2}, \ldots, c_{n}, \ldots$ satisfying the remanence relation

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1, \quad n \geqslant 0 .
$$

Remark: If we specify our initial values of our variables in ow or recurrence relation, then we have unique solutions to owe renurence relation.

Example: Connidu a box of size $2 x n$. In how many ways can you tile this box with 2×1 dominoes?

2×1 dominoes.

Solution: Let D_{n} be this number. There are two cares
(1)

We have DnA possibilities for the rest.
(2)

we have D_{n-2} possibilities for the rest.
$D_{1}=1$

Only one way to tile when $n=1$.
$D_{2}=2$

Only two ways to time when $n=2$.

Thus

$$
\begin{aligned}
& D_{n}=D_{n-1}+D_{n-2}, n \geqslant 2 \\
& D_{1}=1, D_{2}=2
\end{aligned}
$$

$$
\begin{aligned}
& F_{n+1}=F_{n}+F_{n-1}, n \geqslant 1 . \\
& F_{2}=1, F_{3}=2,
\end{aligned}
$$

So $\quad D_{n}=F_{n+1}$, since D_{n} and F_{n+1} satisfy the same recursive definition.

Example: In how many ways can you triangulate a regular polygon with m sides ($m \geqslant 3$)?

For simplicity, let $m=n+2$. Then $n \geqslant 1$.
Let $G_{n}=$ \# of ways to triangulate
 an ($n+2$)-gov.
To get a feeling for the problem, let no compute a feat of the G_{n} 's.
Δ

$$
\begin{aligned}
& G_{1}=1 \\
& G_{2}=2
\end{aligned}
$$

$G_{4}=14$

Let the vertices of our $(n+2)$-gown be labelled $1,2, \ldots, n+1, n+2$. $\mathcal{F}_{i x} k \in\{1,2, \ldots, n+1\}$. The vertices $1, n+2$, and k form a triangle (in the pic, the one with the red border). From the picture this gives us two other polygons; a k-gown and an $(n+3-k)$-goo.

We therefore have the relation

$$
\begin{aligned}
G_{n} & =\sum_{k=2}^{n+1} G_{k-2} G_{n+1-k} \\
& =\sum_{p=0}^{n-1} G_{p} G_{n-1-p} \quad(p=k-2, \text { i.e. } k=p+2)
\end{aligned}
$$

In other words

$$
\begin{aligned}
G_{n+1} & =\sum_{p=0}^{n} G_{p} G_{n-p} \\
G_{0} & =1, G_{1}=1
\end{aligned}
$$

This is the same recursive relation as the one that the Catalan numbers satisfy, and so

$$
G_{n}=C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

