2.6 The Binomial Theorem

Theorem: Let $n \in \mathbb{N}$. Then

$$
(x+y)^{n}=\sum_{n=0}^{n}\binom{n}{i} x^{i} y^{n-i}, \quad x, y \in \mathbb{R} .
$$

Pron:
Fix i. Watt $(x+y)^{n}$ as $(x+y)(x+y) \cdots(x+y)$ (nfoutins)

$$
(x+y)^{2}=(x+y)(x+y) \cdots(x+y) \cdots(x+y)(x+y)
$$

Colour i of the tenters blue and the remaining $n-i$ red. Pick x 's from the blue feutros and y 's from the red. In the expansion of the right side, this choice yields $x^{i} y^{n-i}$ There are $\binom{n}{i}$ sunk choices and so the \# $\cap x^{i} y^{n-i}$ in the expansion is $\left(n_{i}\right)$. Since i varies from 0 to n, we see that

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i} \text {. }
$$

Corollary: $\quad 2^{n}=\sum_{i=0}^{n}\binom{n}{i}$
Pron: Set $x=y=1$ in the binomial thicreem above to get the answer.

The above is an algebraic prof. Here is a combinatorial prof. Consider the sect of all binary strings of lengths n. There are 2^{n} of them. Fix $i \in\{0,1, \ldots, n\}$. The number of binary strings of length n which have i i's in then is $\binom{n}{i}$. Summing over i, we see that $\sum_{i=0}^{n}\binom{n_{i}}{)}$ is the total number of binary strings of length a. The result follows.
2.7 Multinomial coefficients

Let x be a set with 16 elements. In how many ways can we pick three subsets, one A size 8 , a sewnd a second of size 3 , and (of corse) the last of size 5 ?

there is howe one coll do it. Pick a subset of size 8 . There are $\binom{16}{8}$ ways of doing this. Having picked such a subset, from the remaining elements, pick a subset of size 5. There are (58 ways of doing this. Exactly 3 elenmante remaining, giving us the third subset.

The umber of ways of doing this is clearly

$$
\binom{16}{8}\binom{8}{5}=\frac{16!}{8!8!} \frac{8!}{5!3!}=\frac{16!}{8!5!3!}
$$

Notations: suppue $n \in \mathbb{N}, k_{1}, \ldots, k_{r} \in \mathbb{N}_{0}$, with $k_{1}+k_{2}+\ldots+k_{r}=n$. The number $\frac{n!}{k_{1}!k_{2}!\cdots k_{r}!}$ is called a mutimomial coefficient and is denoted $\binom{n}{k_{1}, \ldots, k_{r}}$.

$$
\underset{\text { Multinomial }}{\text { colfivient }} \rightarrow\binom{n}{k_{1}, \ldots, k_{r}}=\frac{n!}{k_{1}!k_{2}!\ldots k_{r}!}
$$

Note that if $k_{1}+k_{2}=n$, then

$$
\binom{n}{k_{1}, k_{2}}=\binom{n}{k}
$$

This con cause confusion.

Theorems: Let $n \in \mathbb{N}$ and $k_{1}, k_{2}, \ldots, k_{r} \in \mathbb{N}_{0}$ be such that $n=k_{1}+k_{2}+\ldots+k_{r}$. The number of ways of splitting a set of size n into an ordered that of r disjoint subset $A_{1}, A_{2}, \ldots, A_{r}$ s.t. $\left|A_{i}\right|=k_{i}$ is

$$
\frac{n!}{k_{1}!k_{2}!\ldots k_{r}!}=\binom{n}{k_{1}, k_{2}, \ldots, k_{r}}
$$

Prop: The strategy is the same as before.

- From the set x, pick a subset A_{1} of size k_{1}. There are $\binom{n}{k_{1}}$ ways of doing this.
- From the remaining $n-k_{1}$ elements, pick a subset of size k_{2}. There are $\binom{n-k_{1}}{k_{2}}$ ways of doing this.
- After picking A_{1} and A_{2}, from the remaining $n-k_{1}-k_{2}$ elements pick a subset A_{3} o size k_{3}. There are $\binom{n-k_{1}-k_{2}}{k_{3}}$ ways 7 doing.

Continue in this manner until yon have subsets $A_{1}, A_{2}, \ldots, A_{r}$ with $\left|A_{i}\right|=k_{i}, i=1, \ldots i r$. The member of ways of doing this is

$$
\begin{aligned}
& \binom{n}{k_{1}}\binom{n-k_{1}}{k_{2}}\binom{n-k_{1}-k_{2}}{k_{3}} \ldots\binom{n-k_{1}-k_{2}-\ldots-k_{r-1}}{k_{r}} \\
& =\frac{n!}{k_{1}!\left(n-k_{1}\right)!} \frac{\left(n-k_{1}\right)!}{k_{2}!\left(n-k_{1}-k_{2}\right)!} \frac{\left(n-k_{1}-k_{2}\right)!}{k_{3}!\left(n-k_{1} k_{2}-k_{3}\right)!} \ldots \frac{\left(n-k_{1}-b_{2}-\ldots-k_{r-1}\right)!}{k_{r}!0!} \\
& =\frac{n!}{k_{1}!k_{2}!\ldots k_{r}!}
\end{aligned}
$$

Example: Let $0 \leq k \leq n-1$. Give a combinatorial prof if.

$$
\binom{n}{k+1}=\sum_{i=k+1}^{n}\binom{i-1}{k}=\binom{k}{k}+\binom{k+1}{k}+\cdots+\binom{n-1}{k}
$$

Prof: Let $i \in\{k+1, \ldots, n\}$. Pick a subset of size k. from $[i-1]=\{1,2, \ldots, i-1\}$. There are $\binom{t-1}{k}$ wop $\{$ doing this. Say $B=\left\{x_{1}, \ldots, x_{k}\right\}$ is picked from $\{1, \ldots, i+\}$. Led $A=\left\{x_{1}, \ldots, x_{k}\right\} \cup\{i\}$. Then A is a subset of eire $k+1$ in $[n]$. To go the otter way, if A is a subset of rife $k+1$ in $[n]$, then set i equal to the largest element in A. Clearly $k+1 \leq i \leq n$. Let $B=A-\{i l s$. Then B is
a set of size k in $[i-1]=\{1,2, \ldots, i-1\}$. It follows that for each $i \in\{k+1, \ldots, n\}$ we have $\binom{i-1}{k}$ subsets of $[u]$ A size $k+1$, with i the largest element in the set. Thus

$$
\binom{n}{k+1}=\sum_{i=k+1}^{n}\binom{i-1}{k}
$$

