Notations:

$$
\begin{aligned}
& \mathbb{N}=\{1,2,3, \ldots, n, \ldots\}=\text { set of natural numbers } \\
& \mathbb{N}_{0}=\{0,1,2,3, \ldots, n, \ldots\}=\{0\} \cup \mathbb{N}=\text { set of non-positive integers } \\
& \mathbb{Z}=\{0, \pm 1, \pm 2, \pm 3, \ldots \pm \pm, \ldots\}=\text { set } \mathcal{q} \text { integers } \\
& \mathbb{R}=\text { set of real numbers } \\
& {[n]=\{1,2,3, \ldots, n\} \text { for } n \in \mathbb{N} .}
\end{aligned}
$$

2.5 The ubiquictora nature of binomial coefficients

Example: In hon many ways can you distri bute 7 apples ts 3 people so that every pusan gets at least one apple? The apples are considered identical.
Sole:

- ○ - ○ T There are ${ }^{6}$ gaps between the apples. Lay out the seven apples in a line as above. There are six gap between the apples. Pick two of them, e.g. the gaps identified by the two vertical bars. The two bans divide the apple into three groups. Give the left most group $1=$ the first phon, the middle group to the second, and the last to the third. This gives us every possible way of distributing the seen apples.

There are 6 gaps ant we picket 2. There ane $\binom{6}{2}$ ways of doing this. Were the number if ways of distributing the apples is

$$
\binom{6}{2}=\frac{6.5}{2}=15 \quad \text { ways. }
$$

Reformulation: The number of solutions to

$$
x_{1}+x_{2}+x_{3}=7, \quad x_{i} \in \mathbb{Z}, \quad x_{i}>0
$$

is 30 .

General care: In how many ways can one distubute k identical apples to n people $(n \leqslant k)$ so that every person gets at least one apple? Solution: Use the same strategy as before. Lay ont the k-apples in a line. Pick ont $n-1$ gaps from the $k-1$ gaps. Any such choice groups the apples into n groups and vice-versa. As before, the answer is:

$$
\binom{k-1}{n-1} .
$$

Reformulation: The number of evolutions to the equation

$$
x_{1}+x_{2}+\ldots+x_{n}=k
$$

where ears x_{i} is a positive integer lie. $x_{i} \in \mathbb{N}$ for $i=1, \ldots, n)$ is $\binom{k-1}{n-1}$.

Example: tow many ways are the ne of distributing k apples amongst n persons, with "no apples" being a valid allocation for a person.
Solution:
suppre we have distinmutet the k apples to the n pusous. None gins each puss an extra apple. we have now distribentel $n+k$ apples among n people si that everyone gits at least one apple. Conversely supple we distubate $n+k$ apples awnings t n people so that every perse gits at least one apple. No no take away one apple form eneyone. Then we have diaturnted k apples amongst n people worth out restrictorus.

This gives:
\# of ways of distributing k apples amongs n people = of ways of distributing $n+k$ apples amongs n puson so that everyone git at least one apple

$$
=\binom{n+k-1}{n-1} .
$$

Reformulation: The number of solutions to

$$
x_{1}+x_{2}+\ldots+x_{n}=k
$$ with each $x_{i} \in N_{0}, i=1, \ldots, n$ is $\binom{n+k-1}{n-1}$.

Example: How many solutions are there t

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \leq 300
$$

with $x_{i} \in N_{0} ? \quad\left(N_{0}=\{0,1,2, \ldots, n, \ldots\}\right)$
Solution:
This is the same as the minter of solutions to

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=300
$$

with $x_{i} \in \mathbb{N}_{0}, i=1, \ldots, 5$.
In fart given a solution to the nav problem, we have $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=300-x_{6} \leq 300$ with $x_{i} \in N_{1}$. Converecly, givens a solution to the old problems, then set $x_{6}=300-\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)$. Then $x_{6} \in N_{0}$ and $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=300, x_{i} \in N_{0}$, and we have a solus. to the new problem.

So the answer is $\binom{300+6-1}{6-1}=\binom{305}{5}$.

Example: How many wasp can one distribute 7 apples to John, Pail, and Mary so that John and Mary get at least me apple, but Pail coned get no apples?

Solution:
Distribute 8 apples among the three of them so that everyone gits at least me, and then take away one from Pond. There are $\binom{\frac{1}{3}-1}{3-1}$ wary of doing this.

Ans: $\binom{7}{2}=\frac{(7)(6)}{2!}=21$

Reformulation: The number of solution to

$$
x_{1}+x_{2}+x_{3}=7, x_{i} \in \mathbb{Z}, \quad x_{1}, x_{2} \geq 1, \quad x_{3} \geqslant 0
$$

is 21

Example: How many ways are there of buying 9 boxes of tea from a store which has 3 different varieties of tea, such that each box has only me variety of tea? (Assume the store has an in exhaustible supply of cark variety \& ten)
Solution:
Suppose one picks b_{1} boxes of the first variety, $b_{2} f$ the second, and b_{3} of the third. Then we have

$$
b_{1}+b_{2}+b_{3}=9 \quad, \quad b_{i} \in \mathbb{N}_{0}
$$

The number of solutions to then is $\binom{9+3-1}{3-1}=\binom{11}{2}$
Ans: $\binom{11}{2}=\frac{(11)(10)}{2}=55$.
Theovan: The number of ways of choosing k objects from n objects with repetitions allowed is

$$
\binom{n+k-1}{n-1}
$$

Pro?. Suppose we pick x_{1} of the fort object, x_{2} of the second,, x, on the nth orient.
Then

$$
x_{1}+x_{2}+\ldots x_{n}=k \quad \text { witt } x_{i} \in N_{0} \text {. }
$$

Comely, any solution to the above grins us a weary if choosing k objento from n dojectas. since the \# of solus is $\binom{n+k-1}{n-1}$, the theorem is proved.

Lattice Patio

Defintion: A lattice path in the plane is a curve made up of line segments that either go fum a point (i, j) is the point $(i+1, j)$ or from a pint (i, j) to a point
(i, $j+1$).
Analter definition, equivalent to the one above is tat a lattice path in the plane is a sequence of pairs of integers

$$
\left(m_{0}, n_{0}\right),\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right), \ldots,\left(m_{k}, n_{k}\right)
$$

such that for all $i=1, \ldots, k-1$, alter
(a) $m_{i+1}=m_{i}+1$ and $n_{i+1}=n_{i}$; or
(b) $m_{i+1}=m_{i}$ and $n_{i+1}=n_{i}+1$.

Let H be a unit horijonal move $(i, j) \mapsto(i+1, j))$ and V a unit ratieal move. Let $X=\{H, V\}$. Then a lattice path is also an X-string together with an initial print (mo ono). For example the red paths below is the origin $\operatorname{los} D$ together with the string $V H H V I H H V V H H$ and the
 green path is $(0,0)$ together with the string HHVHVVHHHV.

Question: Let $m, n \geqslant 0$. What is the number of lattice patties from $(0,0)$ to $(m, n), m, n \geqslant 0$.

11 moves. 7 Hs, 4 V 's.

11 moves. 7 H 's, 4 V 's.

Answer: A patter from $(0,0)$ to (m, n) is the same as an X-string $(X=\{H, v\})$ o length $m+n$ with $m H$'s in the string (or, equiraluitly, n V's). We have pick m places in a string of length $m+n$ to put the N's in. The answer is clearly

$$
\binom{m+n}{m}=\binom{m+n}{n} .
$$

Remark. Suppose $p, q, m, n \in \mathbb{Z}$ with $p \leq m, q \leq n$. Then the number of lattice pattus from (p, q) ts (n, n) is the same as the \# A lattice palters from $(0,0)$ 有 $(m-p, n-q)$ Hence
\# A lattice paths from (p, q) to $(m, n)=\binom{m+n-p-q}{m-p}=\binom{m+n-p-q}{n-q}$

Example: tho many lattice patters from $(0,0) \notin(n, n)$ are there which never go above the diagonal?
("The diagonal" is the line $y=x$).

The patter displayed is one which never goes above the diagonal. It does touch the diagonal in many places though. It any way has to at $(0,0)$ and (u, n).

$$
\text { HVHHUHVUHHVHVHUVHV }<(0,8)
$$

(1,9)
A path which goes above the diagonal. The point $(2,3)$ is the first lattice point of the path which lies above the diagonal.

HHVVVVHHHVVHHHVHVV $\&(0,0)$ Note that every path to (n, n) which goes above the diagonal, must touch the line $y=x+1$. In the picture, $(2,3)$ is the first instance of this for our path.
(0,0)
Call a lattice palter form $(0,0)$ to (n, n) good if it never goes above the diagonal. Otherwise, call it bad. The purple path above is good while the red one is bard. Let
$P=$ Set of all lattice paths form $(0,0) \pi(n, n)$
$G=$ Set of good palters
$B=$ set of bad paths.
Then

$$
|P|=|G|+|B|
$$

Since $|P|=\binom{2 n}{n}$, this gives

$$
|G|=|P|-|B|=\binom{2 n}{n}-|B| .
$$

Let us work ont $|B|$.
suppose σ is a bad patti. Then there is an
$i, 0 \leq i \leq n$, such that $(i, i+1)$ is a point in the palter.
Let i be the smallest sunk number. Another way if saying this is that the bold palto σ must hit the line $y=x+1$, and let $(i, i+1)$ be the first instance where it does. In the red path above, $(2,3)$ is the first instance where the path hits $y=x+1$ and $i=2$. Suppne our bad path σ is as
$(8,10)$

$$
\sigma=\sigma_{1} \sigma_{2}
$$

(1,9) where σ_{1} is the portion of σ from $(0, D)$ to $(i, i+1)$ and σ_{2} is portions from $(i, i+1)$ to (n, n). Let $\tilde{\sigma}_{2}$ be the path from $(l, i+1)$ to $(n-1, n+1)$ detained by switching every harigontal move in σ_{2} to a metical move 2 bluey vertical move to a horingental wore.
Let

$$
f(\sigma)=\sigma_{1} \cdot \tilde{\sigma}_{2} .
$$

(0,0)
(In the picture above, $n=9$ and $(i, i+1)=(2,3)$. The blue path is σ_{2}.) Note that in general, σ_{2} in simply the reflection of σ_{2} about the line $y=x+1$ and that $f(6)$ is a patter from $(0,0)$ to $(n-1, n+1)$. (Another way If seeing this is as follows: The path σ_{2} has $n-i$ horizontal segments and $n-i-1$ vertical syments. This means that $\tilde{\sigma}_{2}$, ito reflection about $y=x+1$, has. $n-i$ rectical segments and $n-i-1$ horizontal segmente. Since the initial point of $\tilde{\sigma}_{2}$ is $(i, i+1)$, its find point must have x-coordinate equal to $i+(n-i-1)=n-1$ and y-coordinate equal to $i+1+(n-i)=n+i$. Thus the terminal point of $\tilde{\sigma}_{2}$ and hence $\cap f(\sigma)$ is $(n-1, n+1)$.)

Conneredy, given any patter from τ from $(0,0)$ ts
$(n-1, n+1)$, it must hit the line $y=x+1$. Let $(i, i+1)$ be the first first instance it does. Write $c=\tau_{1} \tau_{2}$ where τ_{1} is the part $f_{i} \tau$ from $(0,0)$ to $(i, i+1)$ and τ_{2} the pant form $(i, i+1)$ to $(n-1, n+i)$.
Let $\tilde{\tau}_{2}$ be the reflection of τ_{2} about $y=x+1$. Let

$$
g(t)=\tau_{1}{\widetilde{\tau_{2}}}^{0}
$$

It is clear that $g(c)$ is a lattice path from $(0,0)$ to (n, n). CApply the argument we gave to show that $f(G)$ terminates at $(n-1, n+1)$.)

Moreover $g(\tau)$ is a bad patti, since $(i, i+1)$ ia a pout on $g(\tau)$. (In the picture, if τ is the path from $(0,0)$ to $(8,10)$ which is the red bit from $(0,0)$ to $(2,3)$ followed by the blue path then τ_{2} is the blue patter and $\tilde{\tau}_{2}$ is the red bit form $(2,3)$ to $(9,9)$.)

Let Q be the set of lattice palters from $(0,0)$ to $(n-1, n+1)$. We have just shovon that $f: B \longrightarrow Q$ is a bijective correspondence with inverse $g: Q \longrightarrow B$. Thus

$$
|B|=|Q|=\binom{2 n}{n-1}=\binom{2 n}{n+1} .
$$

It follows that

$$
\begin{aligned}
|G| & =\binom{2 n}{n}-\binom{2 n}{n-1} \\
& =\frac{(2 n)!}{n!n!}-\frac{(2 n)!}{(n-1)!(n+1)!} \\
& =\frac{(2 n)!}{n!n!}-\frac{n}{n+1} \frac{(2 n)!}{n!n!} \\
& =\left(1-\frac{n}{n+1}\right) \frac{(2 n)!}{n!n!} \\
& =\frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

The number $\frac{1}{n+1}\binom{2 n}{n}$ is called a Catalan number and is dental C_{n}.

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} \quad \text { Catalan number }
$$

