Last lutine

- Sterings.
- Permintation: $P(n, m)=\frac{n!}{(n-m) ?} \quad(0 \leqslant m \leqslant n)$
\# of m-storinge with distinat entras from a set of n dements.
Sperial eque $P(n, n)=n$!
- Examples:
- Seating 4 poople in a vound table with 7 chairs $\rightarrow \frac{6!}{3!}$
- \# f ways of arranging the letus 1 COMBINATORICS $\rightarrow \frac{13!}{2!2!2!}$
2.3 Countination (subseto)

$$
X=\{A, B, C, D, E, F, G,+1\} .
$$

x-Permutatuons of lenger 4 : $A D E G, G D E A, F H C D, D H B F$
x-Combinations q size $4:\{A, D, E a\},\{C, D, F, H\},\{P, H, F, B\}$
Defintion: A coubiration of size k of a fincte set X is a subsed of X with k elements.

Example: $\quad X=\{A, B, C, D, E\}, k=3$.

	A	B	C	D	E
1	O	O	O		
2	0	0		0	
3	0	0		0	
4	0		0	0	
5	0		0		0
6	0			0	0
7		0	0	0	
8		0	0		0
9		0		0	0
10			0	0	0

$$
\begin{aligned}
& \{A, B, C\} \\
& \{A, B, D\} \\
& \{A, B, E\} \\
& \{A, C, D\} \\
& \{A, C, E\} \\
& \{A, D, E\} \\
& \{B, C, D\} \\
& \{B, C, E\} \\
& \{B, D, E\} \\
& \{C, D, E\}
\end{aligned}
$$

There are 10 of there.
Question: Is there a way of getting the answer without listing possibilities?

The answer is YES.
Trick: Figure ont all permutations I lengths 3. Then account for the over counting. Given an t string $s=x_{1} x_{2} x_{3}$, there is a subset of x

$$
F(\Delta)=\left\{x_{1}, x_{2}, x_{3}\right\}
$$

associated wilt e s. suppose $s^{\prime}=x_{1}^{\prime} x_{2}{ }^{\prime} x_{3}{ }^{\prime}$ is anther permutation of length 3 . Then $F(s)=F\left(s^{\prime}\right)$ if and only if s^{\prime} is a rearrangement of s. There ave 3! rear rangements of s. So

$$
P(5,3)=3!\text { (\# of combinations o size } 3 \text { from } x \text {) }
$$

Notation: Let $C(n, k)$ denote the number of combinations of size k from a set of size n. $(0 \leq k \leq n)$

The above te chmique generalizes, and the same
argument gris $P(n, k)=k!C(n, k)$.
Popontion 2.9: Let x be a finite set of size $n=|x|=\mathbb{N}$. The number of combinations of x of size $k \leq n$ is

$$
C(n, k)=\frac{P(n, k)}{k!}=\frac{n!}{(n-k)!k!}=:\binom{n}{k} \longleftarrow\left\{\begin{array}{l}
\text { "enchoore } k \text { " } \\
\text { binomial } \\
\text { asfficient" } \\
C(n, k) .
\end{array}\right.
$$

2.4 Combinatorial Profs.

Main Principle: Count in two different ways.

Examples:

$$
\text { 1. Shone }\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}, 0 \leq k \leq n \text {. }
$$

Sols: An algebraic proof is easy and left to you. But a combinatorial proof is more illuminating. The L.S. is the number of wasp of choosing k elements from the $s d{ }_{n}[n]=\{1,2,3, \ldots, n\}$. First count the number of enlsits of size k containing 1 , and then cont the minke of subsets not containing 1 , and and the two results.
Choosing k elements so that 1 is amongst the elements chosen is the same as choosing $k-1$ elements from $\{2,3, \ldots, n\}$. There are $\binom{n-1}{k-1}$ ways of doing this.

Choosing k efts es that $\mathcal{1}$ is NOT closer is the same as picking k efts from $\{2,3, \ldots, n\}$. Then are $\binom{n-1}{k-1}$ ways $o f$ doing this.

\leftarrow Have to chore 2 elements from $\{2,3,4,5,6,7\}$

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Those which
do NOT contain 1

Those which do contain 1.
2. $\quad\binom{n}{k}=\binom{n}{n-k}$

$$
\begin{aligned}
& n=7 \\
& k=3
\end{aligned}
$$

0 = spot which is picked
0 = spot which is not picked.
Solution:
Choosing k elements from a set X of size er to put in a bag is the some as choosing $n-k$ elements from X which will not be put in the bag.
3. $\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\ldots+\binom{n}{n}^{2}=\binom{2 n}{n}$.

Note: Did NOT do this in class.
Solution:
Let $X=[2 n]=\{1,2, \ldots, n, n+1, \ldots, 2 n\}$
Let $A=[n]=\{1,2, \ldots, n\}$ and $B=\{n+1, \ldots, 2 n\}$.
The right side is the number of subsets of size n in X. Picking a subset of size n from X io
the same as picking some elements from A, say r A them $(0 \leq r \leq u)$, and the removing $n-r$ from B.
\# A subsets of A of size $r=\binom{n}{r}$
\# A subsets of B of size $n-s=\binom{n}{n-r}$
$\Rightarrow \# A$ subsets $A x$ of size n with or elements in A

$$
=\binom{n}{r}\binom{n}{n-r}
$$

Now or varies from 0 to n. Hence

$$
\begin{aligned}
\# \text { i subsets } A \times \text { i size } & =\sum_{r=0}^{n}\binom{n}{r}\binom{n}{n-r} \\
& =\sum_{r=0}^{n}\binom{n}{r}^{2} .
\end{aligned}
$$

This is the left side.
Example: Recall the last example from Lectrive I. The task was to find the number of "woods" one can obtain by rearranging the letters in COMBINATDRICS. Here is an idea for another prof. Once again, as in the last attampt at solving this, yon are asked to flesh out the details. The ibsen is this: First pick 2 boxer ont of the 13 in the set A boxes below (the blue spots)

0		0			0		0		0	0

Hill these with c's. Then pick, ont of the remaining boxes, two boxes (green spots) and fill that with 0's. Next pick two boxes (purple spots) out of the remaining boxes and fill them with I'S. Distribute MBNATRS in the remaing boxes. Work out the answer yourself.

