Suppose X and Y are independent random variables on (S, P), and $a, t \in \mathbb{R}$ constants, then for $i, j \in \mathbb{R}$

$$
\begin{aligned}
P(X-a=i, \quad Y-b=j) & =P(X=a+i, \quad Y=b+j) \\
& =P(x=a+i) P(Y=b+j) \quad\binom{\text { since } x, y \text { are }}{\text { independent }} \\
& =P(x-a=i) P(Y-b=j) .
\end{aligned}
$$

We have therefore proved the following:
Lemma: If X and Y are independent randoun variables, then X-a and $Y-b$ are also independent for any real constants a and b.

Example: suppose a total of $n+1$ lottery tickets are sold in a tow and the tickets are labelled $\{0,1,2, \ldots, n\}$. Resume that every number has an equal chance of being drawn.

$$
\begin{aligned}
\text { The expected winning ticked number } & =\sum_{i=0}^{n} i \cdot \frac{1}{n+1} \\
& =\frac{1}{n+1} \sum_{i=0}^{n} i \\
& =\frac{1}{n+1} \cdot \frac{n(n+1)}{2} \\
& =\frac{n}{2} \cdot
\end{aligned}
$$

We will use this result to illustrate the notions of variance.

The Variance of a random variable
Consider the following two situations:
ca) A small towow conducts a lottery and sell a 10,001 ticketer. The tickets are labelled $\{0,1, \ldots, 10,000\}$. A bore contains duplicates of every ticket sold and only there.

The lottery is conducted by drawing a ticket from the box with every tract having the same chance of being derain. Hor a ticket t in the bore, let $x(t)$ be its number. Tom the example we just did

$$
E X=\frac{10,000}{2}=5000
$$

(b) Suppose a fair coin is tosed 10,000 (fair means $p=\frac{1}{2}$) and Y is the randoms variable which counts tho number of heads. We sow in the last lecture (witter $n=10,000$ and $p=1 / 2$) that

$$
E Y=10,000\left(\frac{1}{2}\right)=5000 .
$$

In each care the invoge of the random variable is $\{0,1, \ldots, 10000\}$ ant so in each care there random variables make $\{0,1, \ldots, 10000\}$ into the sample space of a probability distributions. The expected value of the random variables is the same, namely 5000.

Now suppose after 10,000 coin tosses, you are told that on at least 7,500 occasions the coin tworved up heads. What would your reaction be?

On the other hound, after the drawing of the wining ticket in the lottery, it was announced (to prolong the suspence) that the winning ticket number was at least 7,500. What would your reaction be?

Chances are you were shocked by the first statement but took the second one in your stride. Nevertheless 7500 is equally from the expected value of X as it is from the expected value of Y - after all the expected value of bolter is 5000 and the set of outcomes of X as well as that for 4 is $\{0,1, \ldots, n\}$.

The idea of variance and standard deviation will help na understand that indeed the possibility of Y being over 7500 is shocking while it is not to shocking that x is larger than 7500 .

Dyinition: Let X be a random variable with expectation $E(x)=\mu$. The variance of x, denoted $\operatorname{var}(x)$, is defined Rs

$$
\operatorname{var}(x)=E(x-\mu)^{2} .
$$

Note that

$$
\operatorname{var}(x)=\sum_{i \in X(s)}(i-\mu)^{2} P(x=i)
$$

Now

$$
\begin{align*}
E(x-\mu)^{2} & =E\left(x^{2}-2 x \mu+\mu^{2}\right) \\
& =E\left(x^{2}\right)-2 \mu E(x)+E\left(\mu^{2}\right) \\
& =E\left(x^{2}\right)-2 \mu^{2}+\mu^{2} \tag{x}\\
& =E\left(x^{2}\right)-\mu^{2} .
\end{align*}
$$

We are using the foul that if c is a constant, then $E(c)=c$. This is because $E(c)=\sum_{i \in x(s)} c P(X=i)=c$.
another way of expressing (x) is

$$
\operatorname{var}(x)=E\left(x^{2}\right)-E(x)^{2}
$$

The standard deviation of x, demoted σ_{x}, is the square root of $\operatorname{var}(x)$, ie.

$$
\sigma_{x}=\sqrt{\operatorname{rar}(x)}
$$

Here are some basic properties of variance and standard deviations.

1. Let x be a raudoun variable and $c \in \mathbb{R}$ a constant. Then
(a) $\operatorname{var}(c x)=c^{2} \operatorname{var}(x)$
(b) $\quad \sigma_{c x}=\mid e l \sigma_{x}$
2. If x, y are random variables then $\operatorname{var}(x+y)$ need not equal $\operatorname{var}(x)+\operatorname{var}(y)$. Homer if X and Y are independent random variates with $E(X)=\mu$ and $E(Y)=\nu \quad($ say $)$, then

$$
\begin{aligned}
\operatorname{var}(x+y)= & E(x+y)^{2}-(\mu+\nu)^{2} \\
= & E\left(x^{2}\right)+E\left(y^{2}\right)+2 E(x y)-\mu^{2}-\nu^{2}-2 \mu \nu \\
= & E\left(x^{2}\right)+E\left(y^{2}\right)+2 E(x) E(y)-\mu^{2}-\nu^{2}-2 \mu \nu \\
& \text { (Mince } x \text { and } y \text { are index.) } \\
= & E\left(x^{2}\right)+E\left(y^{2}\right)-\mu^{2}-\nu^{2} \\
& =\operatorname{var}(x)+\operatorname{var}(y) .
\end{aligned}
$$

The same argument gives us:
Theorem: If X_{1}, \ldots, X_{n} are independent random variables, then

$$
\operatorname{var}\left(x_{1}+\ldots+x_{n}\right)=\operatorname{var}\left(x_{1}\right)+\ldots+\operatorname{var}\left(x_{n}\right) .
$$

This gives us the following result about Binomial random variables:

Theovan: Let X be the Binomial random variable tirith parameters (n, p). Then

$$
\operatorname{var}(x)=n p(1-p)
$$

Proof:
We know that

$$
x=x_{1}+\ldots+x_{n}
$$

where each x_{i} is Bernoulli with penancter p, and $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables. It follows that

$$
\operatorname{var}(x)=\operatorname{var}\left(x_{1}\right)+\ldots+\operatorname{var}\left(x_{n}\right) .
$$

Thus int is enough for us to prove that if Y is a Bernoulli random variable, then var $(y)=p(1-p)$. Now

$$
\begin{aligned}
\operatorname{var}(y) & =0 \cdot P(y=0)+2 \cdot p(y=1) \\
& =0+1 \cdot p \\
& =p .
\end{aligned}
$$

This paves the tho orem.
Remark: An immediate consequence is that the stoppard deviations of a Bernoulli random variable X, with parameters (n, p), is $\sqrt{\operatorname{up}(1-p)}$.

Variance and standard deviation an measures of dispersion Intuitively, both $\operatorname{var}(x)$ and σ_{x} measure the possible dispersion of the outcome from the expected value of the outcome and this will help us analyse the difference between the lottery example and the repented coin toss example above.

Were is the first step towards this analysis of dispusion. Suppose $\sigma_{x}=0$. From what we said we expect $X(s)=\mu$ for every outcome \& which has a positive probability of occurrence. Here are the precise calculations.

Let $\mu=E(x)$. Then

$$
\sum_{s \in s}(x(s)-\mu)^{2} P(s)=\operatorname{var}(x)=\sigma_{x}^{2}=0 .
$$

Since $(X(s)-\mu)^{2} P(s) \geqslant 0 \quad \forall s \in S$, the above means that

$$
(x(s)-\mu)^{2} \cdot P(s)=0 \quad \forall s \in S .
$$

This means that $X(s)=\mu \quad \forall s$ such that $P(s)>0$. If $P(s)=0$, the outcome s is not going to occur in any experiment (since S is a pinite set). Thus $X(s)=\mu$ for every outcome $\&$ which could occur. In otter words we have:

Lemma: Let X be a randoun variable with mean μ suck that $\sigma_{x}=0$. Then

$$
P(x=\mu)=1 .
$$

The following famous inequality will help ta analyse why it is very surprising if we have 7,500 or move heads in 10,000 toss of a fair coin but that is not too surprising if a lottery number dravon at random from $\{0,1, \ldots, 10,000\}$ is larger than 7,500 .

Theorem (Chebyesher's inequality): Let x be a random variable on a probability space (S, P), and let $\mu=E(X)$. Then, for every $k>0$, we have

$$
P\left(|x-\mu| \leqslant k \sigma_{x}\right) \geqslant 1-\frac{1}{k^{2}} .
$$

Proof:
If $\sigma_{x}=0$ then the have seen that $P(X=\mu)=1$. Clearly $(x=\mu)=\left(|x-\mu| \leqslant k \cdot \sigma_{x}\right)$ if $\sigma_{x}=0$, and therefore the theorem is trivially true.

We will now consider the case where the standard deviation does not vaishe.

Suppose $\sigma_{x} \neq 0$. Then $\sigma_{x}>0$.
Let

$$
A=\left\{s \in S| | x-\mu \mid>k \sigma_{x}\right\}
$$

and

$$
B=\left\{s \in s|\quad| x-\mu \mid \leq k \sigma_{x}\right\} .
$$

Then A and B are diajoint and

$$
S=A \cup B .
$$

Thus

$$
P(A)=1-P(B) \text {. }
$$

We have to find a lower bound for $P(B)$. This amounts to finding an upper bound for $P(A)$ and that is what we now proceed to do.
We have:

$$
\begin{aligned}
\operatorname{var}(x) & =E(x-\mu)^{2} \\
& =\sum_{s \in s}(x(s)-\mu)^{2} P(s) \\
& \geqslant \sum_{s \in A}(x(s)-\mu)^{2} \cdot P(s)
\end{aligned}
$$

$$
\begin{aligned}
& \substack{\text { This } \\
P(s)>0 \forall s \in A .} \\
& \geqslant \sum_{s \in A} k^{2} \sigma_{x}^{2} \cdot P(s) \quad\binom{\text { since }|x(s)-\mu|>k \sigma_{x}}{\text { for } s \in A} \\
& k^{2} \sigma_{x}^{2} \sum_{s \in A} P(s) \\
&=k^{2} \sigma_{x}^{2} P(A) .
\end{aligned}
$$

In other woods,

$$
\sigma_{x}^{2} \geqslant f^{2} \sigma_{x}^{2} P(A) \quad\left(\text { for } \operatorname{var}(x)=\sigma_{x}^{2}\right)
$$

Since we assumed $\sigma_{x}>0$, so the above gives $1 \geqslant k^{2} P(A)$, ie.

$$
P(A) \leq \frac{1}{k^{2}} .
$$

This means

$$
1-P(B) \leqslant \frac{1}{k^{2}}
$$

which in tom gives

$$
P(B) \geqslant 1-\frac{1}{k^{2}} .
$$

This is what we had to prove.
A return to the discussion on lottery tickets us. fir coin tosses
The probability that a lottery ticked has value greater than or equal to 7,500 is

$$
\frac{2,500}{10,001} \approx \frac{1}{4}
$$

and so the fact that the winning number is greater thaw or equal to 7,500 is not too surprising (certainly nothing to be shocked about).

As for tossing a fair coin 10,000 is concerned, we know that the number of success follows a Briominal distribution with parameters (n, p) where $n=10,000$ and $p=\frac{1}{2}$.
It follows that if y is a Binomial random variable with ponameatus (n, p) as above, then

$$
E(y)=5000 \text { and } \sigma_{y}=50
$$

By Chebyesher's inequality we thenfore have

$$
P(|y-5000| \leqslant 50 k) \leqslant 1-\frac{1}{k^{2}}
$$

for every $k>0$. For $k=50$, the above trandates to

$$
P(|y-5000| \leqslant 2500) \leqslant 1-\frac{1}{50^{2}}=\frac{2499}{2500} \approx 0.9996 .
$$

This means the chances of there being 7,500 or more heads in 10,000 tosses is very very slim. A good reason to be shocked if that indeed does happen.

