Example: suppose we toss a coins and let H and T dunce the outcomes "heads" and "tails". Suppose further that the coin is such that the probability of the outcome H is p. This means, of course, that the probability of the coin coming up as "tails" after the toss is $q=1-p$.
our sample spare is

$$
S=\{H, T\} .
$$

Define a random variable x on (S, P) by the rule

$$
x(H)=1, \quad x(\tau)=0 .
$$

Then

$$
E(x)=p,
$$

for

$$
E(x)=0 \cdot q+1 \cdot p=p .
$$

Linearity of expectation
Lix a probability space (S, P) and suppose X and Y are two random variables on (S, P). Let $S=\left\{s_{1}, \ldots, s_{d}\right\}$ and $p_{i}=P\left(s_{i}\right), i=1, \ldots, d$. Then

$$
\begin{aligned}
E(x+y) & =\sum_{i=1}^{\alpha}\left(x\left(s_{i}\right)+y\left(s_{i}\right)\right) \cdot p_{i} \\
& =\sum_{i=1}^{d} p_{i} x\left(s_{i}\right)+\sum_{i=1}^{d} p_{i} y\left(s_{i}\right) \\
& =E(x)+E(y) .
\end{aligned}
$$

similarly, one can show that if $\alpha \in \mathbb{R}$ io any constant, then

$$
E(2 x)=\alpha E(x) .
$$

Putting these together we see that if X_{1}, \ldots, X_{n} are random variables on (S, P) and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$ are real constants, then

$$
\text { Limaity of } \longrightarrow E\left(\alpha_{1} X_{1}+\ldots+\alpha_{n} X_{n}\right)=\alpha_{1} E\left(X_{1}\right)+\ldots+\alpha_{n} E\left(X_{n}\right) \text {. }
$$

expectations

Independence
Let (B, P) be a probability space. Iwo events, A and B, are said to be independent if

$$
P(A \cap B)=P(A) P(B) .
$$

If $P(B) \neq 0$, then A and B are independent if

$$
P(A \mid B)=P(A) \text {. }
$$

A collection of events, A_{1}, \ldots, A_{n} are said to be mutually independent if

$$
P\left(A_{i}, \ldots \ldots A_{i_{k}}\right)=\prod_{j=1}^{k} P\left(A_{i_{j}}\right) \text {. }
$$

for any subset $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ of $[n]$.
Example: suppre that on tossing a certain coin, the probability of "heads" occurring is p (so that the probability of "tail" is $q:=1-p)$. Assmine $0<p<1$ (so that $p, q>0$)

Now suppose we toss the coin a second time, and make sure that the first tors does not affect the second toss in anyway.

The sample space (with the notation being obvious) for this experiment of two tosses is

$$
S=\{H H, H T, T H, T T\} .
$$

Let A be the event that the first toss is heals, and B the event that the second toss is tails. Since the first toes does not affect the onterme of the second and vice-versa)

$$
P(B \mid A)=P(B)=q \text {. }
$$

This means

$$
\begin{array}{ll}
\Rightarrow & q=P(B \mid A)=P(A \cap B) / P(A)=P(A \cap B) / P \\
\Rightarrow & P(A \cap B)=p q=P(A) P(B) .
\end{array}
$$

This means threat A ard B are independent.

In fact all these pains of events are independent.

1. $A=\{x y \mid x=H\}, B=\{x y \mid y=H\}$
2. $A=\{x y \mid x=H\}, \quad B=\{x y \mid y=\tau\} \leftarrow$ this is the above example
3. $A=\{x y \mid y=T\}, \quad B=\{x y \mid y=H\}$
4. $A=\{x y \mid y=\tau\}, \quad B=\{x y \mid y=\tau\}$

One can generalise this as follows. Joss the coin a times in a manner that no toss's outcome is influenced by any of the earlier tosses. Now the sample space is

$$
S=\left\{x_{1} x_{2} \ldots x_{n} \mid x_{i} \in\{H, T\}, i=1, \ldots, n\right\},
$$

i.e., S is the set of $\{H, T\}$-strings of length n.

Lit

$$
\begin{array}{ll}
E_{i}=\left\{x_{1} \ldots x_{n} \in S \mid x_{i}=H\right\}, & i=1, \ldots, n \\
F_{i}=\left\{x_{1} \ldots x_{n} \in S \mid x_{i}=F\right\}, & i=1, \ldots, n
\end{array}
$$

Let i_{1}, \ldots, i_{k} be k distinct elements in $\{1, \ldots, n\}$, and j_{1}, \ldots, j_{n-k} the remaining elements of $\{1, \ldots, n\}$, lie.,

$$
\left\{j_{1}, \ldots, j_{n-k}\right\}=[n]-\left\{i_{1}, \ldots, i_{k}\right\} .
$$

Then it is cary to see that

$$
E_{i_{1}}, \ldots, E_{i_{k}}, F_{j_{1}}, \ldots, F_{j_{k}}
$$

are mutually independent.
Independent random variables
Let x, y be two random variables on a probability space (S, P). We say X and Y are independent if for any two real numbers x and y

$$
P(X=x, Y=y)=P(X=x) P(Y=y) .
$$

The symbols $(X=x, y=y),(X=x),(Y=y)$ are shorthand for \{se $S \mid X(s)=x$ and $Y(s)=y\},\{s \in S \mid X(s)=x\},\{s \in S \mid Y(s)=y\}$ respectively.

In general if W is any randoms variable and D is any set in \mathbb{R}, then $(W \in D):=\{s \in S \mid W(s) \in D\}$.

There is another way of viewing this.
Let $f=(x, y)$ be the map

$$
f: s \longrightarrow \mathbb{R}^{2}
$$

given by

$$
f(s)=(x(s), y(s)) .
$$

Let

$$
T=x(S) \times y(S)
$$

Then $f(S) \subset T$, and T is finite. from a discussion in Lecture 20 we conclude that $\left(T, P^{*}\right)$ is a probability space where $P^{*}(D)=P\left(f^{-1}(D)\right)$ for all subsets D of T.

Vertical and horizontal lines are independent in $\left(T, P^{*}\right)$.

In other words, every horizontal line is indequdent of ency vatical line in tho probability space $\left(T, P^{*}\right)$. More precincly, every set of dots on a horizontal line is independent of every set of dotes on a vertical line.

It is easy to see that X and Y are independent if and only if

$$
P(x \in u, y \in v)=P(x \in u) P(y \in v)
$$

for every pair of subsets u, v in \mathbb{R}. Here $(x \in u, y \in v)$ is, as above, the event (in S)

$$
\begin{aligned}
(x \in u, y \in V) & =\{\operatorname{ses} \mid x(s) \in U \text { and } y(s) \in V\} \\
& =(x \in U) \cap(y \in V) .
\end{aligned}
$$

Remark: The events $(X=i),(X \in U)$ te are quite obviously.

$$
\begin{aligned}
& (x=i)=x^{-1}(\{i\}) \\
& (x \in u)=x^{-1}(u) .
\end{aligned}
$$

In the above example with $f: S \longrightarrow \mathbb{R}^{2}$ the map $f(x)=(x(s), Y(s))$, it is easy ts see that

$$
(x=u, y=v)=f^{-1}(u \times v) .
$$

and

$$
(x=i, y=j)=f^{-1}((i, j)) .
$$

The probability diatibitition induced by a random variable
Let $X: S \longrightarrow \mathbb{R}$ be a random varivable in a probability space (S, P). Let $T=f(S)$. Define

$$
p_{t}=P(x=t), \quad t \in T .
$$

In other works $p_{t}=P\left(x^{-1}(t)\right), t \in T$. It is dean that

$$
\sum_{t \in T} p_{t}=1
$$

Thus we get a probability measure P_{x} on $T=x(S)$. This is really our old friend P^{*}. P_{x} is often called the probability distribution of X.

Note that

$$
E(x)=\sum_{t \in T} t \cdot p_{t}
$$

His is wally most useful when $X(S) \subset \mathbb{Z}$, the est of integers.

Bernoulli trials
Any experiment in which there are exactly two outcomes (the two ont comes NEED NOT be equiprobable) is called a Bernoulli trial. The very first example in this lecture, ie. the coin-tossing exaunfle, is an example of a Bernoulli trial. We usually identify the sample space of a Bernoulli
trial with the set $\{0,1\}$, and set

$$
p=P(1), \quad q=P(0) .
$$

Note $\quad q=1 p$.
What we have described is a Bernoulli binal with parameter p, or witt potability of success p (the outcome 1 is often termed "success" and 0 "failure").

Bernonli random variable
Let (S, P) be a provability space and $X: S \longrightarrow\{0,1\}$ a random variable, and say $P(x=1)=p$. As discussed earlier, this makes $\{0,1\}$ a probability space, in font the sample space of a Bernoulli trial wite parameter p. Such an X is called a Bernoulli random variable with parameters p or witt probability of success p. It is easy to see that if X is a Bernoulli random variable then

$$
E(x)=p .
$$

The computation is as below.

$$
E(x)=0 \cdot P(x=0)+1 \cdot p(x=1)=0+p=p .
$$

The Bernoulli distributions
Let $n \in \mathbb{N}$ and $p \in[0,1]$. Consider the probability space (S, P) where $S=\{0,1\}^{n}$, the set of binary strings I length n, and P the probability measure given by

$$
P\left(x_{1} x_{2} \ldots x_{n}\right)=p^{i}(1-p)^{n-i} \quad x_{1} x_{2} \ldots x_{n} \in S
$$

where i is the number of successes, ie. the number of $^{\prime} s$, in the binary sequence $x_{1} x_{2} \ldots x_{n}$.
Why does this define a probability measure. Jo prove that we have to show that

$$
\sum_{s \in S} P(s)=1
$$

We will do this now.

It $i \in\{0,1, \ldots, n\}$. Let
$S_{i}=\left\{x_{1} \ldots x_{n} \in S \mid x_{1} \ldots x_{n}\right.$ contains exactly $i 1$'s $\}$, ie S_{i} is the set of binary strings of lenfter n with
exactly 1 sucusses. Now

$$
\left|S_{i}\right|=\binom{n}{i} .
$$

Hance

$$
P\left(S_{i}\right)=\binom{n_{i}}{i} p^{i}(1-p)^{n-i} \text {. }
$$

Since $S=\bigcup_{i=0}^{n} S_{i}$ and $S_{i} \cap S_{j}=\phi$ if $i \neq j$, we get

$$
\begin{aligned}
\sum_{s \in S} P(s) & =\sum_{i=0}^{n} \sum_{s \in S_{i}} P(s) \\
& =\sum_{i=0}^{n} \sum_{s \in S_{i}} p^{i}(1-p)^{n-i} \\
& =\sum_{i=0}^{n} p^{i}(1-p)^{n-i} \sum_{\Delta \in s_{i}} 1 \\
& =\sum_{i=0}^{n}\binom{n}{i} p^{i}(1-p)^{n-l} \\
& =[p+(1-p)]^{n} \quad \text { (Binomial Theorem e) } \\
& =1 .
\end{aligned}
$$

Next consider the sets

$$
\begin{aligned}
& A_{j}=\left\{x_{1} \ldots x_{n} \in S \mid \quad x_{j}=0\right\}, B_{j}=\left\{x_{1} \ldots x_{n} \in S \mid x_{j}=1\right\} \\
& \text { for } j=1, \ldots, n .
\end{aligned}
$$

Now $A_{j} \cup B_{j}=S$ and $A_{j} \cap B_{j}=\phi$. Hence

$$
P\left(A_{j}\right)=1-P\left(B_{j}\right), \quad j=1, \ldots, n .
$$

By symmetry, it is dem that

$$
P\left(B_{1}\right)=P\left(B_{2}\right)=\ldots=P\left(B_{n}\right) .
$$

Let ne work out $P\left(B_{1}\right)$.
If $x_{1} \ldots x_{n} \in B_{1}$ has i I's in it, then $x_{2} \ldots x_{n}$ has
$i-1$ 1's in it. These $i-1$ 1's can be any of the $n-1$ spots from 2 to n. Thus the ne are $\binom{n-1}{i-1}$ binary strings in B_{1} with i I's in theme. It follows that

$$
\begin{aligned}
P\left(B_{1}\right) & =\sum_{i=1}^{n}\binom{n-1}{i-1} p^{i}(1-p)^{n-i} \\
& =p \sum_{i=1}^{n}\binom{n-1}{i-1} p^{i-1}(1-p)^{n-i} \\
& =p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k} \quad\binom{\text { Make the substitution }}{k=i-1} \\
& \left.=p[p+(1-p)]^{n-1} \quad \text { (Binomial Thu }\right) \\
& =p .
\end{aligned}
$$

It follows that

$$
P\left(A_{j}\right)=1-p, \quad P\left(B_{j}\right)=p, \quad j=1, \ldots, n .
$$

For $1 \leq j \leq n$ let

$$
x_{j}: s \longrightarrow\{0,1\}
$$

be the random variable

$$
x_{j}\left(x_{1} \ldots x_{n}\right)=x_{j} .
$$

Then $\left(x_{j}=1\right)=B_{j}$ and $\left(x_{j}=0\right)=A_{j}$
Thus

$$
P\left(x_{j}=1\right)=p \quad \text { and } \quad P\left(x_{j}=0\right)=1-p .
$$

In other words x_{j} is a Bernoulli random variable with probability $\frac{f}{}$ success p, for every j in $\{1, \ldots, n\}$.

It is easy to see that $x_{1}, x_{2}, \ldots, x_{n}$ are independent (left as an exercise). And they are all Bernoulli with parameter p. They are what are called independent, identically distributed random variables, i.i.d for short.

The random variable

$$
x=x_{1}+x_{2}+\ldots+x_{n}
$$

counts the number of successes, fie.

$$
x\left(x_{1} x_{2} \ldots x_{n}\right)=\text { \# o } 1 \text { 's contained in } x_{1} \ldots x_{n} \text {. }
$$

It is clear from ow r discussion teat

$$
P(x=i)=\binom{n}{i} p^{i}(1-p)^{n-i} \quad i=0, \ldots, n .
$$

X is called a Binomial random variable with parameters (n, p).

It induces a probability space

$$
\left(\{0,1, \ldots, u\}, P_{x}\right)
$$

such that

$$
P_{x}(i)=\binom{n}{i} p^{i}(1-p)^{n-i} \quad i=0, \ldots, n .
$$

The probability space $\left(\{0,1, \ldots, n\}, P_{x}\right)$ is called the Binomial distribution witt parameters (n, p).

Theonan: Let x be the Binomial random ranialle with parameters n, p. Then

$$
E(x)=n p .
$$

Prof:
We have $x=x_{1}+\ldots+x_{n}$, where x_{i} are Bemonlii with panuater p. so $E(x)=\sum_{i=1}^{n} E\left(x_{i}\right)=\sum_{i=1}^{n} p=n p$.

Remark: The probability space (S, P) above of binary strings of lengths n witter $P\left(x_{1} \ldots x_{n}\right)=p^{i}(1-p)^{n-i}$, what $i=\# 1$ successes, Can be regondel as the spare of ont comes of n repetitious I a Benoonli trial with parauncter p le.g. tossing a coin n-times), in such a way that the outcome of one η the repented trials does not affect any of the later trials.

Ludependent random variables again
Let X and Y be independent randoun variables on a probability space (S, P). Let

$$
\begin{array}{ll}
\varphi_{i}=P(X=i), & i \in X(S) \\
q_{j}=P(Y=j), & j \in Y(S) .
\end{array}
$$

Then

$$
\begin{aligned}
E(X Y) & =\sum_{\substack{i \in x(s) \\
j \in Y(s)}} i j P(x=i, y=j) \\
& =\sum_{\substack{i \in x(s) \\
j \in Y(s)}} i j P(x=i) P(y=j) \\
& =\sum_{\substack{i \in X(s) \\
j \in Y(s)}} i j \varphi_{i} q_{j} \\
& =\left(\sum_{i \in x(s)} i p_{i}\right)\left(\sum_{j \in Y(s)} j q_{j}\right) \\
& =E(x) E(y)
\end{aligned}
$$

Move generally, using the same strategy, one shows that if $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables, then

$$
E\left(x_{1} x_{2} \ldots x_{n}\right)=E\left(x_{1}\right) E\left(x_{2}\right) \cdots E\left(x_{n}\right) .
$$

We record this as a theorems.

Theorems: Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of independent random variables on a probability space $\left(S_{3} P\right)$. Then

$$
E\left(x_{1} x_{2} \ldots x_{n}\right)=E\left(x_{1}\right) E\left(x_{2}\right) \cdots E\left(x_{n}\right) .
$$

