Beample:Impore we take a coin and let H and T durits
the ontermen "beaks" and "trails". Impore further that the
coin is such that the probability of the onterme H is p.
Itics means, if course, that the probability of the coin coming
up as "trails" after that the probability of the coin coming
$$mp$$
 as "trails" after that the probability of the coin coming
 mp as "trails" after that the probability of the coin coming
 mp as "trails" after that the probability of the coin coming
 mp as "trails" after that the probability of the coin coming
 mp as "trails" after that the probability of the coin coming
 mp as "trails" after that the probability of the coin coming
 mp as "trails" after the top is a probability of the coin coming
 Mp as the probability space (S, P) buy the order
 Mp and the probability of the coin variable on (S, P). Let
 $S = fhom, sd f, and for $P(hor)$, $i=1,..., d$. Then
 $E(X+Y) = \sum_{i=1}^{N} (X(hi) + Y(hi)) \cdot pi$
 $= E(X) + E(Y). $himilarly, one can be one that ing define any combinationthen $E(x) = a E(X).$ Future these together one see that ing Xu..., Xu are readom
variables on (S, P) and $E(X) = a E(X).$ Future $E(x) = a E(X).$ Future $E(x) = a E(X).$ Future $E(x) = a E(X)$.Future $E(x) = a E(X)$.Future $E(x) = a E(X) + a E(X_1) + \dots + a_N E(X_N).$$$$

-

There is another way of viewing this. Let f=(X,Y) be the map $f: \mathbb{S} \longrightarrow \mathbb{R}^2$ given by $f(s) = (\chi(s), \chi(s)).$ Let $T = X(S) \times Y(S)$ Then f(S) CT, and T is finite. From a discussion in Lecture 20 we conclude that (T, P*) is a probability space where P*(D) = P(f-1(D)) for all subsite D of T. 3-Vertical and horizontal lines are independent in (T, P*). 2 ____X(S) In other words, every horizontal line is independent of every vatical line in the probability space (T, P*). More precisely, every set of dots on a horizontal line is independent of every set of dote on a vertical line. It is easy to see that X and Y are independent if and only if P(xeu, yev) = P(xeu) P(yev) for every poir of entrite U, V in R. Here (XEU, YEV) is, as above, the event (in S) (Xeu, YEV) = { ses | X (s) EU and YIS) EV b = (xeu) ((yev).

Example: The events
$$(X=i)$$
, $(X\in U)$ sti are quite obviously.
 $(X=i) = X^{-1}(\{i\})$
 $(X\in U) = X^{-1}(U)$.
In the above example with $f: S \longrightarrow \mathbb{R}^{2}$ the map
 $f(x) = (X(i), Y(i))$, it is easy to see that
 $(X=U, Y=V) = f^{-1}(U\times V)$.
and
 $(X=i, Y=j) = f^{-1}((i, j))$.
The protochility distribution induced by a random vanishle
Let $X: S \longrightarrow \mathbb{R}$ be a random vanishle m a probability
space (S, \mathbb{P}) . Let $T=f(S)$. Define
 $p_{C} = \mathbb{P}(X=i)$, $t\in T$.
In other results $p \in \mathbb{P}(X^{-1}(i))$, let T be in clean that
 $\frac{1}{X\in T} = 1$.
Thus we get a probability measure \mathbb{P}_{X} or $T=X(S)$. This is
really over all friend \mathbb{P}^{X} . By is often called the
 $p_{C}(X=i) = \sum_{k=T}^{T} t : \mathbb{P}_{k}$
Note that
 $E(X) = \sum_{k=T}^{T} t : \mathbb{P}_{k}$
This is usually most mapful when $X(S) \in \mathbb{Z}$, the set
of integers.
Bernoullis trials.
 $(the two orthorms NEED NOT be equiprobable) in called a.
Bernoullis trials.
 $(the two orthorms NEED NOT be equiprobable) in called a.
Bernoullis trial.
 $(the usually identify the sample of a Bernoulli trial.
 b woully identify the sample of a Bernoulli trial.
 b woully identify the sample of a Bernoulli trial.$$$

The computation is as below.

$$E(X) = O \cdot P(X=0) + 1 \cdot P(X=1) = O + p = p.$$

The Bernoulli distribution

Let n C W and p E [0, 1]. Consider the prototility space (S,P)
where S = f0, 13ⁿ, the set of binary strings of length n, and
P the probability measure gimen by
P(x, x... xn) = pⁱ (1-p)ⁿ⁻ⁱ x₁ x₂... xn G S
where i is the number of successes, i.e. the number of 1's,
in the binary sequence x₁x₂... xn.
Why does this define a probability measure. So prove that we
have the those that

$$\sum_{s \in S}^{i} P(s) = 1.$$

we will do this none.

The inf
$$\{0,1,\dots,n\}$$
. Let

$$S_{i} = \{x_{1},\dots,x_{n} \in S \mid x_{1},\dots,x_{n} \text{ contains oracity i sist},$$
is S_{i} in the and of binning thrings of lengths n with
treatly 1 successes. Non-2

$$|S_{i}| = \binom{n}{2}$$
Hence

$$P(S_{i}) = \binom{n}{2} p^{i} (1-p)^{n-i}.$$
binnee $S = \sum_{i=0}^{n} \sum_{k \in S_{i}} P(k)$

$$\sum_{k \in S} \sum_{i=0}^{n} p^{i} (1-p)^{n-i}.$$

$$= \sum_{i=0}^{n} \sum_{k \in S_{i}} p^{i} (1-p)^{n-i}.$$

$$= \sum_{i=0}^{n} p^{i} (1-p)^{n-i}.$$

$$= \sum_{i=0}^{n} (\frac{n}{2}) p^{i} (1-p)^{n-i}.$$
Binnemial theorem:

$$= 1.$$
Nort consider the sets
 $A_{j} = \{x_{1},\dots,x_{n} \in S \mid x_{j} = 0\}, B_{j} = \{x_{1},\dots,x_{n} \in S \mid x_{j} = 1\}$
for $j = S_{i}$ and $A_{j} \cap B_{j} = \phi$. Hence

$$H_{j} = \frac{1}{2} x_{1} \dots x_{n} \in S[$$

$$K_{j} = 0 \cdot y_{j}, \quad S_{j} = \frac{1}{2} x_{1} \dots x_{n} \in S[$$

$$H_{j} = \frac{1}{2} \dots y_{n}.$$

$$P(A_{j}) = 1 - P(B_{j}), \quad j = \frac{1}{2} \dots y_{n}.$$

$$B_{j} \quad symmetry, \quad it \quad in \quad elean \quad that$$

$$P(B_{j}) = P(B_{2}) = \dots = P(B_{n}).$$

$$Let \quad ne \quad work \quad ont \quad P(B_{j}).$$

$$H_{j} \quad x_{n} \in B_{j} \quad has \quad i \quad 1's \quad in \quad it, \quad then \quad x_{n} \dots x_{n}$$

$$H_{j} = \frac{1}{2} (x_{n} - x_{n}) = \frac{1}{2} (x_{n} - x_{n}) + \frac{1}{2}$$

i-1 1's in it. There i-1 3's can be any of the n-1
spote from 2 to n. Then there are
$$\binom{n-1}{2}$$
 drivery strings
in Bi with i 3's in them. It follows that

$$P(B_i) = \sum_{i=1}^{n} \binom{n-1}{i-1} p^i (1-p)^{n-i}$$

$$= p \sum_{i=1}^{n} \binom{n-1}{i-1} p^{i-1} (1-p)^{n-i}$$

$$= p \sum_{i=1}^{n} \binom{n-1}{i-1} p^{i} (1-p)^{n-i}$$

$$= p [p + (1-p)]^{n-i} \quad (\text{Bisomial Them})$$

$$= p.$$
If follows that

$$P(A_j) = 1-p, \quad P(B_j) = p, \quad j=1,...,n.$$
If $1 \le j \le n$ let

$$X_j : S \longrightarrow \{D, R\}$$
de the roundom variable

$$X_j : (n-1) = \pi j.$$
Then $(X_j = 1) = Rj$ and $(X_j = 0) = hj$

$$\frac{1}{2} \sum_{i=1}^{n} (n-1) = \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^$$

The soundown variable

$$X = X_{1} + X_{2} + \dots + X_{N}$$
counts the number of increases, i.e.

$$X(x, x_{1}, ..., x_{N}) = \# of a's contained in x_{1}..., x_{N}$$
It is clear from over discussion that

$$P(X = i) = \binom{n}{2} p^{i} (1 - p)^{n-i} \quad i = 0_{3}..., y_{N}.$$
X in called a Binomial random variable with parameters

$$(f 0_{1}) = \binom{n}{2} p^{i} (1 - p)^{n-i} \quad i = 0_{3}..., y_{N}.$$
X in called a Binomial random variable with parameters

$$(f 0_{3}) = \binom{n}{2} p^{i} (1 - p)^{n-i} \quad i = 0_{3}..., y_{N}.$$
Such that

$$P_{X}(k) = \binom{n}{k} p^{i} (1 - p)^{n-i} \quad i = 0_{3}..., y_{N}.$$
The postability space (f 0_{3}), ..., y_{N}, P_{X}) is called the
Binomial distribution with parameters (n_{3}p).
There is the there is a formed random variable with
parameters n, p. These

$$E(k) = np.$$
Pag:
be lame $X = X_{1} + ... + X_{N}$, where X_i are Banodii with parameter p.
bo $E(X) = \sum_{i=1}^{N} p = np.$

Demark: The protokility space (3,P) above of binary strings
of lengths n with presender of n reputations
Q a Benodii trial with parameter of one of the second
n times), in such a way, that the ordone of one of the
presented time of the protokility is a prime of one of the
parameters of the protokility is a prime of one of the second
of a Benodic trial with parameter p. (e.g., there of one of the
primes), in such a way, that the ordone of one of the
parameter trials does not affect any of the later trials.