Conditional Probability
Definition: Tet $(S, P)$ be a probability space and let $B$ be an event for which $P(B)>0$. Then for any event $A C S$ we define the probability, of $A$, given $B$, denoted $P(A \mid B)$ as

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$



Example: A bit string of length four is generated at random so that each of the 16 bit strings of length four is equally likely. What is the probability that it contains at least two consecutive O's, given that its bit is a 0 ?
Solution:
The sample space $S$ is:

$$
S=\left\{x_{1} x_{2} x_{3} x_{4} \mid x_{i} \in\{0,1\}, i=1,2,3,4\right\}
$$

Let

$$
B=\{\operatorname{abcd} \in S \mid a=0\},
$$

and

$$
A=\left\{a b c d \in S \mid \text { abed contains two concentre } 0^{\prime} s\right\}
$$

Then

1. $|B|=8$
2. $A \cap B=\{00 c d \in S \mid c, d \in\{0,1\}\} \cup\{0 \mid 00\}$

It is dear that $|\{00 c d \in S \mid c, d \in\{0,1\}\}|=4$
Thus $|A \cap B|=4+1=5$.
This means

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{5 / 16}{8 / 16}=\frac{5}{8} .
$$

Ecomple: What is the probability a family with two children han two boys, given that they have at least one boy. Solution:

The sample space $S$ can be written as

$$
S=\{G G, G B, B G, B B\} .
$$

Let $E=\{B B\}$ and $F=\{G B, B G, B B\}$.
We have been asked to compute $P(E(F)$.

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{1 / 4}{3 / 4}=\frac{1}{3}
$$

The Monty-ttall Three-Door Puzzle
The following problem seemingly involves conditional probability, but in actual fact docsin't.
suppose you are a game show contestant. You have a chance to win a large prize. You are asked to select one of three doors to open; the large prize is behind one of the doors and the other two doors have nothing behind then. The prize is yours if yon (finally) choose the door which has the prize behind it. The game is played as follows: Once you choose a door, the game show host opens one of the two other doors and this is a "losing door", ie. one of the doors behind which there is nothing. Then he offers you a chance to switch your choice. What is a better strategy switching doors or not switching doors?

Solution: This is not really a conditional probability problem though it is seemingly so.

The probability that you picked a door behind whirls. there is nothing is 2/3.

If you picked a losing door then on switching yon will get the prize. So the probability of winning if yon suitcle is $2 / 3$.

The only way you can win if you don't switch is of you picked the winning door. The perstibility of that is $1 / 3$.

Thus it is better to enoitch.
New probability spaces from old
Let $(S, P)$ be a probability space and

$$
f: S \longrightarrow T
$$

a functions from $S$ to another finite set $T$. Define

$$
P^{*}: P(T) \longrightarrow[0,1]
$$

by the rule

$$
P^{*}(D)=P\left(f^{-1}(D)\right), \forall D C T \text {. }
$$

It is then easy to see that $P^{*}$ is a probability measure on $T$, and hance $\left(T, P^{*}\right)$ is a probability space.

Que can do something very similar when $T$ is not finite. In that care, we know that $f(s)$ is finite. Let $T^{\prime}$ be any finite subset of $T$ containing $f(s)\left(e . g\right.$. take $\left.T^{\prime}=f(s)\right)$. Then $f$ can be regarded as a map from $S$ to $T^{\prime}$ and hence as above we can construct a probability space ( $T^{\prime}, P^{*}$ ) with $P^{*}(D)=P\left(f^{-1}(D)\right) \forall$ sulsets $D$ of $T^{\prime}$.

Raudoun Variables
Let $(S, P)$ be a probability space, a random variable $\operatorname{Con}(S, P))$ is a function

$$
x: S \longrightarrow \mathbb{R} .
$$

Lou our discussion above, if $S^{\prime}$ is any finite set containing $X(S), P_{x}: P\left(S^{\prime}\right) \longrightarrow[0,1]$ the map $P_{x}(D)=P\left(X^{-1}(D)\right)$ for all subsets $D$ of $S^{\prime}$, then $\left(S^{\prime}, P_{x}\right)$ is also a probability space. The nice thing is that now $S^{\prime}$ is a subset of the real line.

The Expectation of a random variable
Let $(S, P)$ be a probability. Let

$$
S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}
$$

and let Recall: This is shorthand for $P(\{s, i\}$,

$$
p_{1}=P\left(s_{1}\right), p_{2}=P\left(s_{2}\right), \ldots, p_{n}=P\left(s_{n}\right)
$$

Let

$$
X: S \longrightarrow \mathbb{R}
$$

be a random variable. The expectation of $X$, dented $E(X)$, is

$$
E(X)=p_{1} X\left(s_{1}\right)+p_{2} X\left(s_{2}\right)+\ldots+p_{n} X\left(s_{n}\right) .
$$

The intuition is: Suppose the experiment that produces the outcomes in $S$ according to the probability law $P$ is repeated $N$ times, where $N$ is a large number. Since the probability that $s_{i}$ is the outcome is $p_{i}$, the proportion of $s_{i}$ occurring in the $N$ experiments is apposimately $p_{i}$, and hence:

The number of times $s_{i}$ occurs in the $N$ experiments $\approx p_{i} \cdot N$.
supple tho outcome of the $j^{\text {th }}$ experiment is $\sigma_{j} \in S$. Then

$$
x\left(\sigma_{1}\right)+\ldots+x\left(\sigma_{N}\right) \approx N \cdot \sum_{i=1}^{N} p_{i} x\left(s_{i}\right)\left(-\omega h_{y} ?\right)
$$

Thin implies that the mean of the $x\left(\sigma_{i}\right), i=1, \ldots, N$ is

$$
\frac{x\left(\sigma_{1}\right)+\ldots+x\left(\sigma_{N}\right)}{N} \approx \sum_{i=1}^{N} p_{i} x\left(s_{i}\right)=E(x)
$$

