The clocel form of a generating function

1. $1+x+x^{2}+\ldots=\frac{1}{1-x}$
2. $1+x^{2}+x^{4}+\ldots=\frac{1}{1-x^{2}}$
3. $1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}+\ldots=e^{n x}$
4. $\left(1+\frac{2 x}{1!}+\frac{2^{2} x^{2}}{2!}+\frac{2^{3} x}{3!}+\ldots\right)\left(1+3 x+9 x^{2}+27 x^{3}+\ldots\right)=\frac{e^{2 x}}{1-3 x}$
5. $\frac{x}{1!}+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots=\frac{e^{x}-e^{-x}}{2}$

In all there examples, the right side is a function which is obtained by taking finite sums, differences, products and quotients of well knovon functions like:
(a) Polynomivials, $(b) e^{k x}, k$ a comatont,...

There are no infinite sums ar products in the expressions on the right. There are called the closed forms of the functions on the left.

More examples
6. $1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots=\frac{1}{2}\left(e^{x}+e^{-x}\right)$
7. $\quad \sum_{n=0}^{\infty}\binom{n+k-1}{k-1} x^{n}=\frac{1}{(1-x)^{k}} \quad k \in \mathbb{N}_{0}$.

Yon will seen be asked to waite generating functions or EGFS of sequences in closed form.

Probability Theory (Chapter 10)
We will only deal with finite seta or sometimes very special kinda of infinite r sects (ones which are sijective to N).

Before making formal definitions, some intuitive examples may be helpful.

Examples:

1. An wan contains four slue balls and five red balls. What is the probability that a ball chosen from the wen is blue? (Assume that each of the nine balls has an equal chance of being chosen.)
solution:- Each of the nine onteomes is equally likely, and four of these produce a blue ball. bo the answer is $4 / 9$.
2. What is the probability that when two dice are rolled, the sum of numbers on the two dice is 7?

When nothing is stated, one assumes that all outcomes are equally likely.

Solution: The ont comes can be identified
This is the
"dangerous bend" symbol.
 These are the 36 red dots in the $x y$-plane plotted in the picture on the left.

The "successful" outcomes are the pairs (i, j) amongst the red dots such that $i+j=7$. These are $(1,6),(2,5),(3,4),(4,3),(5,2)$, and $(6,1)$. These precisely the red dots lying on
the line $x+y=7$. There are six successful outcomes, and so the answer is $\frac{6}{36}=\frac{1}{6}$.

Probability spaces
A portability space is a pair (S, P) where S is a finite set and P is a function

$$
P: \varnothing(s) \longrightarrow[0,1]
$$

where $P(S)$ is the set of all insets of $S \quad(P(S)=$ the "power set" of S) such that

1. $P(\phi)=0$ and $P(S)=1$
2. If A, B are subsets of S, and $A \cap B=\phi$, then

$$
P(A \cup B)=P(A)+P(B) .
$$

Important: $P \neq \varnothing$.
Suppose (S, P) is a probability space. Then
(i) S is the sample space. (The book does not define this.)
(ii) P is the probability measure.
(iii) Subsets of S (i.e. elements of $P(S)$) are called events. If $E \subset S$, then $P(E)$ is called the probability of the event E.
(iv) If x is an element of S then x is called an outcome (sometimes an "elementary outcome")

Examples:
3. In example 1 above, the sample space is

$$
S=\left\{B_{1}, B_{2}, B_{3}, B_{4}, R_{1}, R_{2}, R_{3}, R_{4}, R_{5}\right\}
$$

where $B_{i}, i=1,2,3,4$ are the four blue balls and $R_{j}, j=1,2,3,4,5$ are the fine red balls. The event whore pob-ability we have to compute is $E=\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}$. In other words, a successful outcome is that the ball x picked ont of
the win is in E. Since all ont comes are equally likely, and since

$$
\begin{aligned}
P\left(\left\{B_{1}\right\}\right) & +P\left(\left\{B_{2}\right\}\right)+P\left(\left\{B_{3}\right\}\right)+P\left(\left\{B_{4}\right\}\right)+P\left(R_{1}\right)+P\left(R_{2}\right)+P\left(R_{3}\right)+P\left(R_{4}\right)+P\left(R_{5}\right) \\
& =P\left(\left\{B_{1}, B_{2}, B_{3}, B_{4}, R_{1}, R_{2}, R_{3}, R_{4}, R_{5}\right\}\right) \quad\left(\text { by } P_{\text {roperty }} 2\right) \\
& =P(S) \\
& =1,
\end{aligned}
$$

it follows that

$$
P(\{x\})=\frac{1}{9} \quad \forall x \in S .
$$

Thus $P(E)=P\left(\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}\right)=P\left(\left\{B_{1}\right\}\right)+P\left(\left\{B_{2}\right\}\right)+P\left(\left\{B_{3}\right\}\right)+P\left(\left\{B_{4}\right\}\right)$

$$
=\frac{4}{9} .
$$

We don't have to be this elaborate in our solutions. It was done this way to illustrate the various definitions
4. In example 2 above $S=\{(i, j) \in \mathbb{N} \times \mathbb{N} \mid 1 \leqslant i, j \leqslant 6\}$, and

$$
\begin{gathered}
E=\{(i, j) \in S \mid i+j=7\}=\{(6,1),(5,2),(4,3),(3,4),(2,5),(1,6)\} . \\
\text { Ir }(i, j) \in S, \\
P(\{(i, j)\})=\frac{1}{36}
\end{gathered}
$$

and hance

$$
P(E)=\frac{6}{36}=\frac{1}{6} .
$$

Demark: Since S is finite, P is complety specified by its values on outcomes. In other wards, if one knows $P(\{x\})$ for avery $x \in S$, then one kurus $P(E)$ for avery $E \in P(S)$. To see this, suppose $E=\left\{x_{1}, \ldots, x_{n}\right\} \subset S$. Since $\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{3}\right\}, \ldots,\left\{x_{n}\right\}$ are mutually digoint by Property 2 of probability spaces applied repeatedly, we see that

$$
P(E)=P\left(\left\{x_{1}\right\}\right)+P\left(\left\{x_{2}\right\}\right)+\ldots+P\left(\left\{x_{n}\right\}\right) .
$$

Notational relaxation: If x iss an outcome, it is simpler to winter $P(x)$ rater than $P(\{x\})$ and we will often do so. Writing $P(\{x\})$ can be cumbersome.

Definition: An experiments is a procedure that yields one of a givens set of possible outcomes.

This is a standard term in probability theory, but is not used in the textbook. It is however useful terminology. In example 1, the experiment is drawing a ball from the uru. In example 2, the experiment is rolling a pair of dice. The tern allows a greater flexibility in describing a random process.
5. In a lottery, players win a large prize when they pick four digits that match, in the correct order, four digits selected by a random mechanical process. A smaller paine is won if only three digits are matched. What is the probability that player wins the large prize? What is the probability that a player wins the small prize?
Solution: The sample space is

$$
S=\{0,1, \ldots, a\} \times\{0,1, \ldots, 9\} \times\{0,1, \ldots, 9\} \times\{0,1, \ldots, 9\} .
$$

Since nothing is stated about the probabilities of the outcomes, we will assume all outcomes are equally lively. There are 10^{4} outcomes and so if $(x, y, z, t) \in S$ is an outcome then

$$
P(\{(x, y, z, t)\})=10^{-4} .
$$

There is only one way to choose all four digits cornalty, and so the probability that a player wins the large prize is 10^{-4}.

To win n the smaller prize one hae to choose exactly
three digits correctly, or, what is the same thing, one chooses exactly one digit incorrectly.

Let (a, b, c, d) be the outcome with all four digits correct. Let

$$
\begin{aligned}
E_{1} & =\{(x, y, z, t) \in S \mid x \neq a, y=b, z=c, t=d\} \\
E_{2} & =\{(x, y, z, t) \in S \mid x=a, y \neq b, z=c, t=d\} \\
E_{3} & =\{(x, y, z, t) \in S \mid x=a, y=b, z \neq c, t=d\} \\
\text { and } \quad & E_{4}
\end{aligned}=\{(x, y, z, t) \in S \mid x=a, y=b, z=c, t \neq d\} .
$$

Then the choice (x, y, z, t) wins the smaller prize if and only if it tres in one of the sets $E_{1}, E_{2}, E_{3}, E_{4}$. Thus one wins the smaller prize if and only if the event $E=E_{1} \cup E_{2} \cup E_{3} \cup E_{4}$ occurs.

Now $E_{1}, E_{2}, E_{3}, E_{4}$ are mutually disjoint li.e. $E_{i} \cap E_{j}=\phi$, if $i \neq j$). So

$$
P(E)=P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{S}\right)+P\left(E_{4}\right) \text {. }
$$

Now for $i=1,2,3,4$

$$
\left|E_{i}\right|=9 \quad(w \ln ?)
$$

Hence

$$
P\left(E_{i}\right)=\frac{9}{10^{4}}
$$

whirls yields

$$
\begin{aligned}
P(E)=4 \times \frac{9}{10^{4}}=\frac{36}{10^{4}}=\frac{9}{2500} . \begin{array}{l}
\text { This is } \\
\text { good ewongl. }
\end{array} \\
\text { Dort simplify }
\end{aligned}
$$

If you are cwinous, $\frac{9}{2500} \approx 0.0036$. So the chances of winning the smaller prize are very bow, and the chances of winning the larger prize even lower $(=0.0001)$.

Bridge games: A standard deck of cards contains 52 cards consisting of four "suits", each suit t having

13 cards each. The sintas are named spades, hearts, clubs, and diamoule. The 13 cards in a suit have "values" or "denominations" which are

Note thane are four cards of every value, e.g. There is a 7 in each of the four suites; in the jargon of card players, a 7 of spates, 7 of hearts, 7 of clues, and 7 of diamonds.

A bridge game is played with two teams consisting of two players each. The cards of one of the players, called the "dummy" are known to the otter three players. Each player has 13 cards (called the "hand" of the player) and the cards in each haul (except that of the dummy) are knovon only to the player who has that hand.

People in the same team (partners) sit oppointe each other and every player has an opponent to their left and one to theirs right.
$N \quad N$ and S are in

6. In a bridge hand you and your partner (who is the duminy) have two aces between the two of you. What is the probibility that one of you opponents has the remaining two aces?

Solution:
On the face of it, it seems as if the probiblity
is. $1 / 2$. We will see this not so (though the answer is close).

Let us fins work out the chance that the opponent to your left has both the remaining aces. You and yous partner account for 26 cards that you knows. The opponent to the left has two aces (there is only one way this can happen) from the 26 cards with your opponents. This opponent hare 11 more cards, and these have to be chosen from 24 cards (since the fate of two of the cards is krooni). so
\# If ways opponent on left has the remaining two aces

$$
=\binom{24}{11} .
$$

The \# of passible hands opp. on left has $=\binom{26}{13}$
This implies:

$$
\begin{aligned}
\begin{aligned}
\text { Potability opponent on left } \\
\text { has remaining aces }
\end{aligned} & =\frac{\binom{24}{11}}{\binom{26}{13}} \\
& =\frac{24!}{11!13!} \frac{13!13!}{26!} \\
& =\frac{24!13!}{11!26!} \\
& =\frac{(13)(12)}{(26)(25)} \\
& =\frac{1}{2} \frac{12}{25}=\frac{6}{25}
\end{aligned}
$$

By symmetry, the probability that your opponat on the right hes the two remaining aces is also $6 / 25$. Since the two
events are mutually exclusive:
P (one of the ops. has both remaining aces) $=\frac{12}{25}$.
This can be verified by an independent compentation of a probability of the "complementary event", namely the event that each of the opponents has one ace.

There are two ways to distribute the two remaining aces amongst the two opponents (obviously!). Of the remaining 24 cards, 12 have to be distributed to the opponent on the left (the remaining 12 go to the one on the right). So
\# of ways apps. have one remaining ace each $=2$. $\binom{24}{12}$.
Hence

$$
\begin{aligned}
P(\text { Each opp has exactly one remaining ace }) & =\frac{2 \cdot\binom{24}{12}}{\binom{26}{13}} \\
& =2 \cdot \frac{24!}{12!12!} \frac{13!13!}{26!} \\
& =2 \frac{13^{2}}{(26)(25)} \\
& =\frac{13}{25}
\end{aligned}
$$

This means that

$$
P \text { (One of the ops. has both remaining aces) }=1-\frac{13}{25}=\frac{12}{25}
$$ excatty as before.

Remark: Note that both $\frac{12}{25}$ and $\frac{13}{25}$ are close to $\frac{1}{2}$. How aver the chance of each opponent having one ace each is slightly higher them the chance that one of them hale both the remaining aces.

If you wish to, you can put all this in a "probability
space framework" as follows:
Let R be the set of cards which are not yours or your partner's (so $|R|=26$). Let A_{1}, A_{2} be the aces which are not with you or your pertiner. The sample space S is:

$$
S=\{H \mid H \subset R \text { and }|H|=13\} \text {. }
$$

S represents the set of possible hands of the opponent to your left.

The event that the opponent to your left halle both A_{1} as well as A_{2} as part of his or her hand is

$$
E_{L}=\left\{H \in S \mid A_{1} \in_{H} \text { and } A_{2} \in H 1\right\} \text {. }
$$

The "event" that the opponent to your right has A_{1} and A_{2} ias:

$$
E_{R}=\left\{H \in S \mid A_{1} \notin H \text { and } A_{2} \notin H\right\} .
$$

The event that one of your opponents holds both A_{1} and A_{2} is:

$$
E=E_{L} \cup E_{R} .
$$

Clearly $E_{1} \cap E_{2}=\phi$.
Since no information has been provided about the probability measure, one assumes that every outcome $H \in S$ is equally probable. Non

$$
|s|=\binom{26}{13} .
$$

It follows that

$$
P(H)=\frac{1}{\binom{26}{13}} \quad \forall H \in S .
$$

We will often not frame our solution in terms of probability spaces, especially when a direct attack is possible. Neverthders, it is a useful framework which gives us conceptual clarity ant we may fall back on it when the problems asked seems confusing.

