2-1 Strings (finite sequences)
Examples

- stringer of chavontins

$$
\underbrace{t n u a b k l}_{\text {length } 7}, \underbrace{v w x e g}_{\text {length } 5}
$$

- string of polygons

$$
\text { length } 4 .
$$

Definition: Let X be a set and $u \in \mathbb{N}(\mathbb{N}=$ est q national number $)$. An X-string of length n is a function

$$
s:\{1,2,3, \ldots, n\} \longrightarrow x
$$

Instead of waiting s as above, we prefer to do the following. Let

$$
x_{i}=s(i) \quad, i=1, \ldots, n \text {. (Note: } x_{i} \in X \text { !) }
$$

Then we write

$$
s=x_{1} x_{2} \ldots x_{n} .
$$

(length is n)
Remarks:

- Every "member" x_{i} of the storing s is an element of x.
- Repetitions could ours (e.g. it is porerible that x_{1} equals $x_{q_{2}}$).
- Order matters! $\alpha \beta r \neq r \beta \alpha$.

Let $s=x_{1} \ldots x_{n}$ be an x-string. The x_{i} are called the characters of s.

Definition (binary string): A binary string is a $\{0,1\}$ - string.

Examples: $1011011100,00001010$.
Question: Now many binary strings of length n are there?
Answer:

$$
\underbrace{2 \cdot 2 \cdots \cdot 2}_{n \text { times }}=2^{n}
$$

Theorem: The number of x-strings of length n io $|x|^{n}$, where $|x|=$ \# A elements in x.

Prof: This is beat pound by induction which we will teach later. In the meancobile leave is a prof. Io an arbituary x-string $s=x_{1} \ldots x_{n}$ of length n, the ne are $|x|$ choices for $x_{1},|x|$ chriess fer $x_{2},|x|$ choices for x_{3}, and so on. So eve have $|x| \cdots|x|=|x|^{\text {s }}$ chores in total Distinct choice lead to distanced X-strings. So ave have IX In X-strings in total.

Example: A somband Ontario licence plate is of the form

$$
X_{1} X_{2} X_{3} X_{4} \cdot N_{1} N_{2} N_{3}
$$

where $X_{1}, x_{2}, X_{3}, X_{4}$ are (upper care) letters of lees English alphabet and N_{1}, N_{2}, N_{3} are numbers between 0 and 9 , lie. $N_{1}, N_{2}, N_{3} \in\{0,1,2, \ldots, 9\}$. How many such strings are thine?
answers: $26^{4} \cdot 10^{3}$.
2.2 Permutations

Example: Let $x=\{a, b, c, d\}$.
Peruntalions: atc, $a d b, a b c d, b d, d c a b, b d a e$. Not permutaliñ: $a a b$, $a b c, b b c, d d c b$.

Definition: A permutation of a set X is an X-storing of length $n, s=x_{1} x_{2} \ldots x_{n}$, s.t. $x_{i} \neq x_{j}$ for $i \neq j$.
(This is the same as saying $s:\{1,2, \ldots, n\} \longrightarrow X$ is one-tione).

Example: How many Ontario license plates are there with no repeated characters or numbers?

$$
X_{1} X_{2} X_{3} X_{4} \cdot N_{1} N_{2} N_{3}
$$

Answer: $26 \cdot 25 \cdot 24 \cdot 23 \cdot 10 \cdot 9 \cdot 8=\frac{26!}{22!} \cdot \frac{10!}{7!}$

$$
=\frac{26!}{(26-4)!} \cdot \frac{10!}{(10-3)!}
$$

hopontion 2.6 Let $m=|x|$. The number of permutations of X of length $n \leq|x|$ is

$$
P(m, n)=\frac{m!}{(m-n)!}=m(m-1) \cdots(m-(n-1))
$$

Proof: For a permutation $s=x_{1} x_{2} \ldots x_{n}$ q length n, there are $m=|x|$ choices for x_{1}; having chosen x_{1}, there are $m-1$ choices for x_{2}; Once x_{1} and x_{2} are chosen, there are $m-2$ chriess for x_{3}; and so on until there are $m-(n-1)$ choices for x_{n}. Hence there are $m(m-1)(m-2) \cdots(m-(n-1))$ claries.

Example: Let $|X|=16$. The number of permutations A length 4 is $16 \cdot 15 \cdot 14 \cdot 13$.

Important Special case: As arrive, let $|x|=m$. Then
\# A perantations of x of length $m=P(m, m)$

$$
\begin{aligned}
& =\frac{m!}{(m-m)!} \\
& =\frac{m!}{0!} \\
& =\frac{m!}{1} \\
& =m!
\end{aligned}
$$

Example: In hone many ways can you seat 4 different people at a round table with 7 chairs? Rotations are not counted as different.
Eng.

are considered the same. Here the set of chains is $S=\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}\right\}$ arranged clockwise, and the set of people is $P=\{A, B, C, D\}$
Solution: The number ways of assigning chains to A, B, C, D so that two different purus are assigned district chavis is a one to ore map

$$
f: P \longrightarrow S
$$

In other words, this is simply a 4-pernutations of the set S. There ave $P(7,4)=\frac{7!}{3!}$ sunk maps. However, rotations are to be consed! as the same. Enc assignment is counted 7 times. Thus lie solutions is $P(7,4) / 7=6!/ 3!=6.5 \cdot 4=120$.

Example: How many words of leigh B can yon make with the letters in COMBINATORICS?
Solution:
The difficulty is that there are two C 's, two O 's and two I's. The problem is solved by first ovencounting and then understanding how much we have overcontel by, just as we did in the problem of counting seating arrangements in a round table. So first pretend that the 13 letters shovon are distinct. Then account for the repetitions ($\| C, 0$, and I). I will leave the working of the solution to yon. If you are arrisus, the answer is $\frac{13}{2!2!2!}$. There is another way of doing this using the ${ }^{2!2!2!}$ notion of "combinations". We will introduce that notion in the next class.

