Generating functions and linear recurrence relations
Example (homogeneous care):
Corrida the recurrence relation

$$
a_{n}+a_{n-1}-6 a_{n-2}=0, \quad n \geqslant 2 ; \quad a_{0}=1, a_{1}=3 .
$$

Reroute as $a_{0}=1, a_{1}=3$.
Let $g(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ be the generating function of $\left(a_{n}\right)_{n \geqslant 0}$.
we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(a_{n+2}+a_{n+1}-6 a_{n}\right) x^{n+2}=0 \\
\Rightarrow \quad & \sum_{n=0}^{\infty} a_{n+2} x^{n+2}+x \sum_{n=0}^{\infty} a_{n+1} x^{n+1}-6 x^{2} \sum_{n=0}^{\infty} a_{n} x^{n}=0
\end{aligned}
$$

ie.

$$
\sum_{n=2}^{\infty} a_{n} x^{n}+x \sum_{n=1}^{\infty} a_{n} x^{n}-6 x^{2} \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

$$
\begin{aligned}
& \Rightarrow \quad\left(g(x)-a_{0}-a_{1} x\right)+x\left(g(x)-a_{0}\right)-6 x^{2} g(x)=0 \\
& \Rightarrow \quad\left(1+x-6 x^{2}\right) g(x)-a_{0}-\left(a_{1}+a_{0}\right) x=0
\end{aligned}
$$

Since $a_{0}=1$ and $a_{1}=3$, this gives

$$
\left(1+x-6 x^{2}\right) g(x)=1+4 x
$$

ie.

$$
\begin{aligned}
g(x) & =\frac{1+4 x}{1+x-6 x^{2}} \\
& =\frac{1+4 x}{(1-2 x)(1+3 x)}
\end{aligned}
$$

By the theory of partial fractions we get

$$
\frac{1+4 x}{(1-2 x)(1+3 x)}=\frac{A}{1-2 x}+\frac{B}{1+3 x} .
$$

There are many ways to find A and B. The standard trick is to rewrite the above as

$$
1+4 x=A(1+3 x)+B(1-2 x),
$$

and then equate coifficents of powers of x on both sides.
another way is to set $x=1 / 2$ and them $x=-1 / 3$
Setting $x=1 / 2$ we get

$$
\begin{array}{ll}
& 1+4\left(y_{2}\right)=A\left(1+\frac{3}{2}\right) \\
\text { i.e. } & A=\frac{6}{5}
\end{array}
$$

Setting $x=-y_{3}$ we get

$$
\begin{aligned}
& \quad 1-\frac{4}{3}=B\left(1+\frac{2}{3}\right) \\
& \text { i.e. } B=-1 / 5 . \\
& \text { The other method (Q equating wefficients) will also } \\
& \text { wide the same ansute. An eiltres care we get } \\
& \qquad \begin{aligned}
g(x) & =\frac{6}{5} \frac{1}{1-2 x}-\frac{1}{5} \frac{1}{1+3 x} \\
& =\frac{6}{5} \sum_{n=0}^{\infty} 2^{n} \cdot x^{n}-\frac{1}{5} \sum_{n=0}^{\infty}(-3)^{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left\{\frac{6}{5} \cdot 2^{n}-\frac{1}{5}(-3)^{n}\right\} x^{n} .
\end{aligned}
\end{aligned}
$$

It follows that

$$
a_{n}=\frac{6}{5} 2^{n}-\frac{1}{5}(-3)^{n}, n \in N_{0}
$$

Example (Non-homogeneous care):
Consider

$$
\begin{gathered}
a_{n}-a_{n-1}-2 a_{n-2}=2^{n}, n \geqslant 2 \\
a_{0}=2, a_{1}=1 .
\end{gathered}
$$

Re-write this as

$$
a_{n+2}-a_{n+1}-2 a_{n}=2^{n+2}, n \in \mathbb{N}_{0} ; a_{0}=2, a_{1}=1
$$

This gives.

$$
\sum_{n=0}^{\infty}\left\{a_{n+2}-a_{n+1}-2 a_{n}\right\} x^{n+2}=\sum_{n=0}^{\infty} 2^{n+2} \cdot x^{n+2}
$$

ie.

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n+2} x^{n+2}-x \sum_{n=0}^{\infty} a_{n+1} x^{n+1}- & 2 x^{2} \sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{i=0}^{\infty} 2^{n+2} \cdot x^{n+2}
\end{aligned}
$$

$$
\Rightarrow \sum_{n=2}^{\infty} a_{n} x^{n}-x \sum_{n=1}^{\infty} a_{n} x^{n}-2 x^{2} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=2}^{\infty} 2^{n} x^{n}
$$

Let $g(x)=\sum_{i n=0}^{\infty} \operatorname{an} x^{n}$. Then the above trandates to

$$
\left(g(x)-a_{0}-a_{1} x\right)-x\left(g(x)-a_{0}\right)-2 x^{2} g(x)=\sum_{n=0}^{\infty} 2^{n} x^{n}-2 x-1
$$

Since $a_{0}=2$ and $a_{1}=1$ the above gives

$$
\begin{aligned}
& g(x)-2-x-x g(x)+2 x-2 x^{2} g(x)=\frac{1}{1-2 x}-2 x-1 \\
& \Rightarrow\left(1-x-2 x^{2}\right) g(x)-2+x=\frac{1}{1-2 x}-2 x-1 \\
& \Rightarrow \quad(1-2 x)(1+x) g(x)=\frac{1}{1-2 x}-3 x+1 \\
&= \frac{2-5 x+6 x^{2}}{1-2 x}
\end{aligned}
$$

Thu e

$$
g(x)=\frac{2-5 x+6 x^{2}}{(1-2 x)^{2}(1+x)}
$$

We have a partial fraction decomposition

$$
\frac{2-5 x+6 x^{2}}{(1-2 x)^{2}(1+x)}=\frac{A}{1-2 x}+\frac{B}{(1-2 x)^{2}}+\frac{C}{1+x}
$$

ie.

$$
\begin{equation*}
2-5 x+6 x^{2}=A(1-2 x)(1+x)+B(1+x)+C(1-2 x)^{2} \tag{*}
\end{equation*}
$$

A, B, and C can be found by equating coefficuentas.
Another mettrod is:
Set $x=y_{2}$ in (x). We get

$$
2-5\left(\frac{1}{2}\right)+6\left(\frac{1}{4}\right)=B\left(1+\frac{1}{2}\right)
$$

which gives

$$
B=\frac{2}{3} .
$$

Next set $x=-1$ in (*). Get

$$
2-5(-1)+6(-1)^{2}=c(1-2(-1))^{2}
$$

This gives

$$
C=13 / 9 .
$$

Next differentiate both sides of $(*)$ to get

$$
-5+12 x=A(1-2 x)-2 A(1+x)+B-4 C(1-2 x)
$$

Now set $x=1 / 2$ in the above. We get

$$
\begin{aligned}
& 1 \\
& \Rightarrow \quad A=-2 A\left(\frac{3}{2}\right)+\frac{2}{3} \\
& \Rightarrow
\end{aligned}
$$

This yields

$$
\begin{aligned}
g(x) & =\left(-\frac{1}{9}\right) \frac{1}{1-2 x}+\frac{2}{3} \frac{1}{(-2 x)^{2}}+\frac{13}{9} \frac{1}{1+x} \\
& =-\frac{1}{9} \sum_{n=0}^{\infty} 2^{n} x^{n}+\frac{2}{3} \sum_{n=0}^{\infty}(n+1) 2^{n} x^{n}+\frac{13}{9} \sum_{n=0}^{\infty}(-1)^{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left\{\left(\frac{-1}{9}+\frac{2}{3}\right) 2^{n}+\frac{2}{3} n \cdot 2^{n}+\frac{13}{9}(-1)^{n}\right\} x^{n} \\
& =\sum_{n=0}^{\infty}\left\{\frac{5}{9} \cdot 2^{n}+\frac{2}{3} n \cdot 2^{n}+\frac{13}{9}(-1)^{n}\right\} x^{n}
\end{aligned}
$$

Thu re

$$
a_{n}=\underbrace{\frac{5}{9} 2^{n}+\frac{13}{9}(-1)^{n}}+\frac{2}{3} n \cdot 2^{n}
$$

sole of assoc. homog. equ.

