Nou-homogenerus linear recurrence relations
Example: Consider the recurrence relation

$$
a_{n+2}-5 a_{n+1}+b a_{n}=n, \quad n \in \mathbb{N}_{0}
$$

If $\Phi(x)=x^{2}-5 x+b$, then the above equ is the same as the equation

$$
\Phi(A) f=F
$$

where

$$
F(n)=n, \quad n \in N_{0} .
$$

There are many solutions to this equation, but let us find one. An intelligent guess for a solution is g_{p}, where

$$
g_{p}(n)=\alpha n+\beta, \quad n \in \mathbb{N}_{0},
$$

α, β being constant to be determine (so that $\Phi(A) g_{p}=F$).
The subscript " p " in g_{p} will be explained shortly.
we want $\Phi(A) g_{p}$ ts equal F s ie. we wont.

$$
\left(A^{2}-5 A+6\right) g_{p}=F
$$

Now

$$
\begin{aligned}
A^{2} g_{p}(n) & =g_{p}(n+2) \\
& =\alpha(n+2)+\beta \\
& =\alpha n+2 \alpha+\beta \\
-5 A g_{p}(n) & =-5 g_{p}(n+1) \\
& =-5 \alpha(n+1)-5 \beta \\
& =-5 \alpha n-5 \alpha-5 \beta \\
6 g_{p}(n) & =6 \alpha n+6 \beta
\end{aligned}
$$

Thu e

$$
\begin{aligned}
\Phi(A) g_{p}(n) & =(\alpha-5 \alpha+6 \alpha) n+(2 \alpha+\beta-5 \alpha-5 \beta+6 \beta) \\
& =2 \alpha n-3 \alpha+2 \beta
\end{aligned}
$$

This means $\Phi(A) g_{p}=F$ if and only if

$$
2 \alpha n-3 \alpha+2 \beta=n, \quad n \in \mathbb{N}_{0} .
$$

In other words (by equating coefficients)

$$
2 \alpha=1 \text { and }-3 \alpha+2 \beta=0
$$

This yields

$$
\alpha=\frac{1}{2}, \quad \beta=\frac{3}{4} .
$$

So $\quad g_{p}(n)=\frac{1}{2} n+\frac{3}{4}, \quad n \in \mathbb{N}_{0}$.
Thus we have found one solution, a pertienter solution. This explains the subscript "p" in g_{p}.

The homogeneous equation.

$$
\Phi(A) f_{1}=0
$$

is called the associated homsgoneons equation.
suppose g_{1} is any solution of the assoc. hong. equ.
Then $\Phi(A) g_{1}=0$. Hence if

$$
g=g_{1}+g_{p}
$$

then

$$
\begin{aligned}
\Phi(A) g & =\Phi(A)\left(g_{1}+g_{p}\right) \\
& =\Phi(A) g_{1}+\Phi(A) g_{p} \\
& =0+F \\
& =F .
\end{aligned}
$$

It follows that $g=g_{1}+g_{p}$ is a solution of the original recurrence equation $\Phi(A) f=F$.

Conversely, suppose g is a sols. of $\Phi(A) f=F$.
set $g_{1}=g-g_{p}$, so that $g=g_{1}+g_{p}$.
Claim: g_{1} is a solution of the assoc. hong. equ.
Pf. \& claim: $\quad \Phi(A) g_{1}=\Phi(A)\left(g-g_{p}\right)=\Phi(A) g-\Phi(A) g_{p}=F-F=0$.

We tanowe that $g(x)=x^{2}-5 x+6$ can be factored as $\Phi(x)=(x-3)(x-2)$ and hence the general solution of the assoicated homogeneous equation $\Phi(A) f=D$ is

$$
g_{h}(n)=c 2^{n}+d 3^{n}, \quad I_{n} \in \mathbb{N}_{0} \text {, }
$$

where c, d are arbitrary complex constants.
From our discussion above the general solution to

$$
a_{n+2}-5 a_{n+1}+6 a_{n}=n, \quad n \in \mathbb{N}_{0}
$$

is $g=g_{h}+g_{p}$, ie.,

$$
g(n)=c \cdot 2^{n}+d \cdot 3^{n}+\frac{1}{2} n+\frac{2}{4}
$$

where $c, d \in \Phi$ are arbitrary constants.

$$
* *(\text { End of example })
$$

The argument given in the example for showing that every solution is of the form $g_{h}+g_{p}$, where I_{h} is the general solution of the homogeneous part and g_{p} is a particular solution is not specific to the example. We expand on this below.

General and particular editions:
Let $\Phi(x)$ be a polynomial, $F: N_{0} \longrightarrow \mathbb{C} a$ function. Consider the recurrace relation

$$
\begin{equation*}
\Phi(A) f=F . \tag{*}
\end{equation*}
$$

The equation

$$
\Phi(A) f=0 \quad \longrightarrow(* *)
$$

is called the assoinated homogeneous equation. The argument given in the example works without change to give that if g_{p} is a specific solution A the equ. ($*$) then all other solutions are of the form

$$
g=g_{h}+g_{p}
$$

where $g_{\text {e }}$ is a solution $f(* *)$, ie. of the associated homogeneous equation. Thurs if g_{h} is the general solution of $(* *)$ then the general sols. $f(*)$ is $g_{h}+g_{p}$.

More examples
In examples 2,3, and 4 below, we assume $\Phi(x)=x^{2}-5 x+6$.
We will solve

$$
\Phi(A) f=F
$$

for specific $F: N_{0} \rightarrow \mathbb{C}$ in there example. In the example above, $F(n)=n, n \in \mathbb{N}_{0}$.
2. $\quad F(n)=7^{n}, n \in \mathbb{N}_{0}$.

Fry $g_{p}(n)=\alpha .7^{n}, n \in \mathbb{N}_{0}$

$$
\left.\begin{array}{l}
A^{2} g_{p}(n)=g_{p}(n+2)=\alpha \cdot 7^{n+2}=49 \alpha \cdot 7^{n} \\
-5 A g_{p}(n)=-5 g_{p}(n+1)=-5 \alpha \cdot 7^{n+1}=-35 \alpha \cdot 7^{n} \\
6 g_{p}(n)=6 \alpha \cdot 7^{n}
\end{array}\right\} n \in \mathbb{N}_{0}
$$

Thus

$$
\begin{aligned}
\Phi(A) g_{p}(n) & =(49 \alpha-35 \alpha+6 \alpha) \cdot 7^{n} \\
& =20 \alpha \cdot 7^{n}
\end{aligned}
$$

for $n \in \mathbb{N}_{0}$.
Since $F(n)=7^{n}, \quad 20 \alpha \cdot 7^{n}=7^{n}, \quad \forall n \in \mathbb{N}_{0}$.

$$
\Leftrightarrow \alpha=\frac{1}{20}
$$

Thus $g_{p}(n)=\frac{1}{20} 7^{n}$
The general solus. is

$$
g(n)=\underbrace{c 2^{n}+d 3^{n}}+\frac{1}{20} 7^{n}, n \in \mathbb{N}_{0}
$$

bronogeneone part
with c, d being arbituary complex constants.
3.

$$
F(n)=n 7^{n}, \quad n \in \mathbb{N}_{0}
$$

Try

$$
g_{p}(n)=\underbrace{(2 n+\beta) \cdot 7^{n}}_{\text {poly. of deg } 1 .}, n \in \mathbb{N}_{0}
$$

$$
\begin{aligned}
A^{2} g_{p}(n)= & g_{p}(n+2)=\{\alpha(n+2)+\beta\} \cdot 7^{n+2} \\
& =49(\alpha n+2 \alpha+\beta) \cdot 7^{n} \\
-5 A g_{p}(n)=-5 g_{p}(n+1) & =-5\{\alpha(n+1)+\beta\} \cdot 7^{n+1} \\
& =-35(\alpha n+\alpha+\beta) \cdot 7^{n} \\
6 g_{p}(n) & =(6 \alpha n+6 \beta) \cdot 7^{n}
\end{aligned}
$$

Thus.

$$
\begin{aligned}
\Phi(A) g_{p}(n) & =\{(49 \alpha-35 \alpha+6 \alpha) n+98 \alpha+49 \beta-35 \alpha-35 \beta+6 \beta\} \cdot 7^{n} \\
& =\{20 \alpha n+63 \alpha+20 \beta\} \cdot 7^{n} \\
\Rightarrow \quad 20 \alpha & =1 \text { and } 63 \alpha+20 \beta=0 \\
\Rightarrow \quad \alpha & =\frac{1}{20} \text { and } \beta=\frac{-63}{400} . \\
g_{p}(n) & =\left(\frac{1}{20} n-\frac{63}{100}\right) 70^{n}, n \in \mathbb{N}_{0}
\end{aligned}
$$

and gen'l sols is

$$
g(n)=c 2^{n}+d 3^{n}+\left(\frac{1}{20} n-\frac{63}{100}\right) 70^{n}, n \in \mathbb{N}_{0}
$$

where c, d, arbitiony complex constants.
4. $\quad F(n)=n^{2} \cdot 2^{n}, n \in N_{0}$.

The first thought might be to try $g_{p}(n)=\left(\alpha n^{2}+\beta_{u}+r\right) \cdot 2^{4}$, $n \in N_{0}$. This will not work because $\gamma \cdot 2^{n}$ is already a solutions of the associated homogeneous equation. Instead one tries

$$
g_{p}(n)=n \cdot\left(\alpha n^{2}+\beta n+r\right) \cdot 2^{n}, n \in N_{0} .
$$

This will work. Details are left to yon.
5. In this example we take

$$
\Phi(x)=(x-2)^{2}=x^{2}-4 x+4
$$

and give the form if g_{p} for the equ

$$
\Phi(A) f=F
$$

where

$$
F(n)=n^{3} \cdot 2^{n} \quad n \in N_{0} .
$$

The n^{3} factor arks us to look fer g_{p} of the form $g_{p}(n)=\left(\alpha n^{3}+\beta n^{2}+\gamma n+\delta\right) \cdot 2^{u}$, but this will not work. We
have to account for the fact tat 2 is a root of the chanantinstio polynomial of multiplicity, 2 . The comet form of g_{p} in

$$
g_{p}(n)=n^{(2)}\left(2 n^{3}+\beta n^{2}+\gamma_{n}+\delta\right) \cdot 2^{n}, n \in \mathbb{N}_{0}
$$

One has to solve for α, β, r, and $\bar{\delta}$ using the equation (s)

$$
g_{p}(n+2)-5 g_{p}(n+1)+6 g_{p}(n)=n^{3} \cdot 2^{n}, n \in H_{0}
$$

The details are left to you.
The following theorem gives the general technique for finding g_{p} for equations of the form

$$
\Phi(A) f=F
$$

where $\Phi(x)$ is a polynomial and F is of the form

$$
F(n)=\left(c_{0} n^{d}+c_{1} n^{d-1}+\ldots+c_{d-1} n+c_{d}\right) \cdot \lambda^{n}, n \in \mathbb{N}
$$

where $c_{1}, c_{1}, \ldots, c_{d}, \lambda$ are complex constanta. If λ is a root of $\Phi(x)$ then ito multiplicity (as a root) plays a role in the form of g_{p} that we chore. Here is the complete statement.

Theovern: Let $\Phi(x)$ be a polynomial and let
$F: N_{0} \longrightarrow \mathbb{C}$ be the function

$$
F(n)=\left(c_{0} n^{d}+c_{1} n^{d-1}+\ldots+c_{d-1} n+c_{d}\right) \cdot a^{n}, \quad n \in \mathbb{N}_{0}
$$

where $\lambda, c_{i}, i=0, \ldots, d$ are complex constants with c_{0} and λ nourzew.

Consider the reentreme relation

$$
\begin{equation*}
\Phi(A) f=F \tag{*}
\end{equation*}
$$

(a) If a is NDT a root of the charatindic polynounial I, then we can find a particular solution. g_{p} of the form

$$
g_{p}(n)=\left(\alpha_{0} n^{d}+\alpha_{1} n^{d-1}+\ldots+\alpha_{d-1} n+\alpha_{d}\right) \cdot \lambda^{n}, n \in N_{0}
$$ where $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d} \in \mathbb{C}$.

(b) If $\lambda \frac{1 s}{}$ a root of the characteridic polynomial Φ, say of multiplicity m, then we can find a particular solution g_{p} of the form

$$
g_{p}(n)=n^{m}\left(\alpha_{0} n^{d}+\alpha_{1} n^{d^{+}}+\cdots+\alpha_{d-1} n+\alpha_{d}\right) \cdot \lambda^{n}, \quad n \in \mathbb{N}_{0} .
$$

Remarks:

1. The constants $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d}$ are worked out from the relation

$$
\left(\Phi_{1}(A) g_{p}\right)(n)=\left(\cos ^{d}+c_{1} n^{d-1}+\ldots+c_{d-1} n+c_{d}\right) \cdot \lambda^{n}, \quad n \in \mathbb{N} \text {. }
$$

2. Io those who have seen some abstract algebra, the) $g=g_{h}+g_{p}$ relationship is a special care of the fact that if $\varphi: G \longrightarrow H$ is a group homomorphioun, K the kernel \Rightarrow of φ, then for $h \in Q(G) \subset H, \varphi^{-1}(h)$ is the coset $k g$ of k, Where g is any element which maps to h under φ. In own care, $G=H=V, \varphi=\varphi(A), h=F, g=g_{p}, k=S$, the space of solutions of $\Phi(A) f=0$.

Recurrence relations and generating functions
Example: Consider the recurrence relation

$$
a_{n+1}=\sum_{k=0}^{n} a_{k} a_{n-k}, \quad n \in N_{0}
$$

virtu initial condition

$$
a_{0}=1 .
$$

Recall that the number C_{n} of Catalan patten satisfies this recurrence (as well as the initial condition). See Lecture 5, especially the section on Catalan patties. In Lecture 3, using the clever idea of reflections, we showed that the number of Catalan fates in $\frac{1}{n+1}\binom{2 n}{n}$ (look up the tail end of Lecture 3).

We now solve this being generating functions.
Let

$$
g(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

be the generating function for $\left(a_{n}\right)_{n=0}^{\infty}$.
we have

$$
a_{n+1}=\sum_{k=0}^{n} a_{k} a_{n-k} \quad, n \in \mathbb{N}_{0}
$$

Multiplying both sides with x^{n+1} and summing we get

$$
\sum_{n=0}^{\infty} a_{n+1} x^{n+1}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} a_{n-k}\right) x^{n+1}
$$

ie.

$$
\begin{aligned}
g(x)-a_{0} & =x \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} a_{n-k}\right) x^{n} \\
& =x g(x)^{2}
\end{aligned}
$$

by the formula for the product of power series. Since $a_{0}=1$, the above can be re-wertten as

$$
x g(x)^{2}-g(x)+1=0
$$

This gives

$$
g(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x} .
$$

Using L'hopital's rule, we see that

$$
\lim _{x \rightarrow 0} \frac{1+\sqrt{1-4 x}}{2 x}=-1 \text { and } \lim _{x \rightarrow 0} \frac{1-\sqrt{1-4 x}}{2 x}=1 \text {. }
$$

(Check these!)
since $g(0)=a_{0}=1$, it follows that

$$
g(x)=\frac{1-\sqrt{1-4 x}}{2 x}
$$

Now, from Newton's binomial theorem we have

$$
\begin{aligned}
(1-4 x)^{1 / 2} & =\sum_{n=0}^{\infty}\binom{1 / 2}{n}(-4 x)^{n} \\
& =1+\sum_{n=1}^{\infty}\binom{1 / 2}{n}(-1)^{n} 4^{n} x^{n}
\end{aligned}
$$

Morcona, we showed in Lecture 16 (see Corollary on page 3 of the notes for that lecture) that

$$
\binom{1 / 2}{n}=\frac{1}{2 n} \frac{(-1)^{n-1}}{4^{n-1}}\binom{2(n-1)}{n-1}, n \geq 1
$$

Thus

$$
\begin{aligned}
(1+4 x)^{y_{2}} & =1+\sum_{n=1}^{\infty} \frac{1}{2 n} \frac{(-1)^{n-1}}{4^{n-1}}\binom{2(n-1)}{n-1}(-1)^{n} 4^{n} x^{n} \\
& =1-\sum_{n=1}^{\infty} \frac{2}{n}\binom{2(n-1)}{n-1} x^{n} \\
& =1-2 \sum_{m=0}^{\infty} \frac{2}{m+1}\binom{2 m}{m} x^{m+1} \quad\binom{\text { substitution: }}{m=n-1}
\end{aligned}
$$

Thus

$$
\sqrt{1-4 x}=1-2 x \sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n} x^{n} .
$$

Substitute this in the formula $g(x)=(1-\sqrt{1-4 x}) / 2 x$. Get

$$
g(x)=\sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n} x^{n}
$$

Thus

$$
a_{n}=\frac{1}{n+1}\binom{2 n}{n}, \quad n \in N_{0}
$$

exactly as before!

