Recurrence (Chapter 9)
Example: Let $g: N_{0} \longrightarrow \mathbb{C}$ be a function, and c a nou-zero complex number. Consider the recurrence relation

$$
a_{n+1}-c a_{n}=g(n) \quad, n \in \mathbb{N}_{0}
$$

It is dear that if one knows a_{0}, then an for $n \geqslant 1$ cam be determined. For example, $a_{1}=c a_{0}+g(0), a_{2}=c a_{1}+g(1)$ eli. Suppose $g(n)=0 \quad \forall n \in N_{0}$. Then it is easy to see that $a_{n}=a_{0} c^{n}, n \in N_{0}$. Indeed if $n=0$, this is a tautology. Suppose it is tome for some $n \in \mathbb{N}_{0}$. Then

$$
a_{n+1}=c a_{n}=c\left(a_{0} c^{n}\right)=a_{0} x^{n+1}
$$

Equations of the form $a_{n+1}-c a_{n}=0, n \in \mathbb{N}_{0}$ ares called linear homogeneous equations.

The advancement operator: A sequence of complex numbers $\left(a_{n}\right)_{n \rightarrow 0}$ can be regarded as a function $f: \mathbb{N}_{0} \longrightarrow \mathbb{C}$, namely the function $f(n)=a_{n}$, for $n \in \mathbb{N}_{0}$. We can define the advancement opentor
$A: V \longrightarrow V$ whore V is the sit of functions of the form $f: \mathbb{N}_{0} \longrightarrow \mathbb{C}$, by the rule $A f: \mathbb{N}_{0} \longrightarrow \mathbb{C}$ is the function

$$
\text { (Af) }(n)=f(n+1) \text {. }
$$

In this notation $A^{k} f$ is the function $\left(A^{k} f\right)(n)=f(n+k)$, for all $k \in N_{0}$. In particular A° is the identity on V.

In these terms the relation $a_{n+1}-c a_{n}=0$ becomes $(A-c) f=0$, and the solution is $f(n)=d c^{n}, n \in \mathbb{N}_{0}$, where $d \in \mathbb{C}$ is a constant $\left(d=a_{0}\right)$.

The following example is at the next level of complication.
Example: Consider the recurrence relation

$$
a_{n+2}-5 a_{n+1}+6 a_{n}=0, \quad n \in \mathbb{N}_{0}
$$

If we know an for two successive n's, says a_{p} and
a_{p+1}, then we know the nest a^{n}, namely a_{p+2}, since $a_{p+2}=5 a_{p+1}-6 a_{p}$. It follows that one knows a_{p+k} fer $k \geqslant 0$, by repeatedly using the recurrence relation above. In particular, if we know a_{0} and a_{1}, then we know all the $a_{n}, n \in N_{0}$.
a_{s} before, identifying $\left(a_{n}\right)_{n \geqslant 0}$ witter $f: N_{0} \longrightarrow \mathbb{C}$ given by $f(n)=a_{n}$, the above relation can be re written as

$$
\left(A^{2}-5 A+6\right) f=0 .
$$

i.e., as

$$
(A-3)(A-2) f=0
$$

Note that if g_{1} and g_{2} are solutions of $\left(A^{2}-5 A+6\right) f=0$ then for $a, b \in \mathbb{C}, a g_{1}+b g_{2}$ is also a solution, for

$$
\left(A^{2}-5 A+6\right)\left(a g_{1}+b g_{2}\right)=a\left(A^{2}-5 A+6\right) g_{1}+b\left(A^{2}-5 A+6\right) g_{2}=0 \text {. }
$$

Suppose g is a solution of

$$
(A-2) f=0
$$

and h a solution of

$$
(A-3) f=0
$$

Then

$$
\left(A^{2}-5 A+6\right) g=(A-3)(A-2) g=(A-3)(0)=0
$$

and

$$
\left(A^{2}-5 A+6\right) h=(A-2)(A-3) h=(A-2)(0)=0 .
$$

This means g and h are solutions of the original recurrence equation $a_{n+2}-5 a_{n+1}+6 a_{n}=0$. Further, we know that

$$
g(n)=p^{2^{n}}, n \in \mathbb{N}
$$

and

$$
h(n)=q 3^{n}, n \in \mathbb{N}
$$

for rove complex numbers p and f. Thus

$$
a_{n}=p \cdot 2^{n}+q \cdot 3^{n}, n \in \mathbb{N}_{0}
$$

is a solution of our recurrence relation. From our above observations, this is a eduction for every value of p and q in C. Now suppose that we also had initial conditions

$$
a_{0}=\alpha, \quad a_{1}=\beta .
$$

Then, as we just argued, these initial conditions completely determine the solution to the recurrence relation. Note that if $p 2^{n}+q^{3 n}$ is our solution, then

$$
p+q=\alpha \text { and } 2 p+3 q=\beta \text {. }
$$

This means

$$
p=3 \alpha-\beta \text { and } q=\beta-2 \alpha \text {. }
$$

Thus $(3 \alpha-\beta) \cdot 2^{n}+(\beta-2 \alpha) \cdot 3^{n}$ is the enrique solution to owe recurrence relation with initial conditions $a_{0}=\alpha, a_{1}=\beta$. In particenlur, every solution of the recurrence relation

$$
a_{n+2}-5 a_{n+1}+6=0
$$

le. of the form

$$
a_{n}=p \cdot 2^{n}+q \cdot 3^{n}, \quad n \in N_{0} .
$$

Example: Now consider the example

$$
a_{n+2}-2 r a_{n+1}+r^{2} a_{n}=0, n \in \mathbb{N}
$$

where $r \in \mathbb{C}$ is a constant, with $r \neq 0$. Ir $f: N_{0} \longrightarrow \mathbb{C}$, let $A_{f}: N_{0} \rightarrow \mathbb{C}$ be $\left(A_{f}\right)(n)=f(n+1)$. We com nowise the above as

$$
\begin{aligned}
& \quad\left(A^{2}-2 r A+r^{2}\right) f=0 \\
& \text { ie. } \quad(A-r)^{2} f=0 .
\end{aligned}
$$

Que solution we can get from this computation in

$$
a_{n}=p r^{n} \quad, n \in \mathbb{N}_{0}
$$

where p is an arbitiary (complex) constant. If the initial audition are $a_{0}=1$ and $a_{1}=3 r$, then $a_{n}=p r^{n}, n \in \mathbb{N}_{0}$ does not satisfy these initial conditions for any $p \in \mathbb{C}$, for then $p=1$ and $p r=3 r$, ie. $p=1$ and $p=3$, which is not possible.

Consider $f: N_{0} \longrightarrow \mathbb{C}$ given by

$$
f(n)=n r^{n}, \quad n \in \mathbb{N}_{0} .
$$

Then

$$
\begin{aligned}
& f(n+2)-2 r f(n+1)+r^{2} f(n) \\
= & (n+2) r^{n+2}-2 r(n+1) r^{n+1}+r^{2}(n) r^{n}
\end{aligned}
$$

$$
=r^{n+2}((n+2)-2(n+1)+n)=0 \text {. }
$$

This gives us a second solution. It follows that

$$
g(n)=p r^{n}+q u r^{n}, n \in \mathbb{N}_{0}
$$

is a solution of $a_{n+2}-2 r a_{n+1}+r^{2} a_{n}=0$
for every choice of $p, p \in \mathbb{C}$. If we add initial conditions

$$
a_{0}=\alpha, \quad a_{1}=\beta
$$

then we wish to choose $p, i \in \mathbb{C}$ s.t.

$$
g(0)=\alpha \text { and } g(1)=\beta \text {. }
$$

Can ere find such p and q ? Now p and q must sutra fy

$$
p=\alpha \text { and } p r+q r=\beta
$$

ie. $p=2$ and $q=\frac{\beta-\alpha r}{r}$.
Thus, every solution cam be written in the form

$$
p r^{n}+q n r^{n}, \quad n \in N_{0}
$$

and if the initial conditions are $a_{0}=2, a_{1}=\beta$, then the solution is

$$
a_{n}=\alpha r^{n}+\frac{\beta-\alpha r}{r} n r^{n}, \quad n \in N_{0} .
$$

Rs eve argued earlier this is the ennigne solution of the recurrence relation which satisfies $a_{0}=\alpha$ and $a_{1}=\beta$.

Remark: More generally, with r as above and $m \in \mathbb{N}$, and g_{1}, \ldots, g_{m} the functions $g_{i}(n)=n^{i-1} r^{n}$, the reewrence relation

$$
(A-r)^{m} f=0
$$

has g_{1}, \ldots, g_{m} as solutions and every solution is of the form $p_{1} g_{1}+p_{2} g_{2}+\ldots+p_{m} g_{m}$, where p_{1}, \ldots, p_{m} are anbituany couples mounters. In otter words, every solution looks like

$$
p_{1} r^{n}+p_{2} n r^{n}+p_{3} n^{2} r^{n}+\ldots+p_{m} n^{m-1} r^{n}, \quad n \in N_{0} .
$$

We will not prove this, but have are the main steps in the argument. Suppose $a_{0}=\alpha_{0}, a_{1}=\alpha_{1}, \ldots, a_{m-1}=\alpha_{m-1}$ are the
initial conditions for owe recurrence elation

$$
\sum_{k=0}^{m}\binom{m}{k} r^{m-k} a_{n+k}=0 \quad, \quad n \in \mathbb{N}_{0} .
$$

(This is the same as $(A-r)^{m} f=0$.) Then the equations

$$
\sum_{j=1}^{m} i^{j-1} r^{i} p_{j} \quad \sum_{j=1}^{m} i^{j^{-1}} r^{i} p_{j}=\alpha_{i}, \quad i=0, \ldots, m-1 \quad\left(0^{0}=1\right. \text { here) }
$$

form a system of m linear equations in the m aknowors p_{1}, \ldots, p_{m}. It can be re-written as

$$
\left(\begin{array}{ccc}
a_{11} & \ldots & a_{m 1} \\
\vdots & & \\
a_{1 m} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
p_{1} \\
\vdots \\
p_{m}
\end{array}\right)=\left(\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{m-1}
\end{array}\right)
$$

with $a_{i j}=(i-1)^{j-1} r^{i-1}, i=1, \ldots, m, j=1, \ldots, m$ (with $0^{0}=1$). One shows (we won't), that the coefficient matrix is invatible and have the system has a unique solution for p_{1}, \ldots, p_{m}.

The general theory
Let $c_{0}, c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{C}$, with $c_{0} \neq 0$ and $c_{k} \neq 0$. Let
$g: N_{0} \longrightarrow \mathbb{C}$ be a function. A reentrance relation
of the form:

$$
\begin{equation*}
c_{0} a_{n+k}+c_{1} a_{n+k-1}+\ldots+c_{k-1} a_{n+1}+c_{k} a_{n}=g \quad, n \in \mathbb{N} \tag{*}
\end{equation*}
$$

ia. called a linear recurrence relation.
If we prove k succesive values of the a_{n}, say $a_{r}, a_{r+1}, \ldots, a_{r+k-1}$, then clearly one can work ont a_{r+k} from the above equation (since $c_{0} \neq 0$), and in fact $a_{r}+n$ for all $n \geq k$. In particular of we know $a_{0}, a_{1}, \ldots, a_{k-1}$, then we known an for all $n \in \mathbb{N}_{0}$.

Another way of phrasing what eve just said is :
The linear reewnence relation

$$
c_{0} a_{n+k}+c_{1} a_{n+k-1}+c_{2} a_{n+k-2}+\ldots+c_{k-1} a_{n+1}+\mathcal{E}_{k} a_{n}=g(n)
$$ together withe the initial conditions $a_{0}=\alpha_{0}, a_{1}=\alpha_{1}, \ldots, a_{k-1}=\alpha_{k-1}$ $\left(\alpha_{0}, \ldots, \alpha_{k-1} \in \mathbb{C}\right.$ fixed) has a unique solutions.

Remark: The set V of maps $f: N_{0} \longrightarrow \mathbb{C}$ is a vector space of infinite dimension). The advancement operator $A: V \longrightarrow V$ is a linear map, and therefore so is any polynomial of the form $\alpha_{0} A^{k}+\alpha_{1} A^{k-1}+\ldots+\alpha_{k-1} A+\alpha_{k}, \alpha_{i} \in \mathbb{C}, i=0,1, \ldots, k$.

The rewornance relation $(*)$ above cen be rewintten as

$$
\begin{equation*}
\left(c_{0} A^{k}+c_{1} A^{k-1}+\ldots+c_{k-1} A+c_{k}\right) f=g \text {. } \tag{x*}
\end{equation*}
$$

Let Φ be the polynomial

$$
\Phi(x)=\sum_{i=0}^{k} c_{k-i} x^{i}
$$

Than (x) (or $(* *))$ can be worttien as

$$
\Phi(A) f=g
$$

The homogenons case: suppose $g=0$ in ($*$) (and hence in ($* *$) and $\left.(x, x)^{\prime}\right)$. Then (x) is called a homogenons recurrence relation. The equation then is

$$
\begin{equation*}
\Phi(A) f=0 \tag{t}
\end{equation*}
$$

Recall that we have assumed that c_{0} and C_{k} are nou-zero.
Let S be the subset of V which satisfy the above homogeneous recurrence relation. Since $\Phi(A): V \longrightarrow V$ is a linear operator, therefore S is a linear subspace of V, being the nl space of the linear operator $\Phi(A)$.

We claim S is k-dimensional. In fort we have a map

$$
T: S \longrightarrow \mathbb{C}^{k}
$$

given by

$$
T_{g}=(g(0), g(1), \ldots, g(k-1))
$$

This is dearly linear. Conversely, suppose

$$
\left(\alpha_{0}, \ldots, \alpha_{k-1}\right) \in \mathbb{C}^{k}
$$

Let g be the unique solution of our recurrence relation witt initial conditions $a_{0}=\alpha_{0}, a_{1}=\alpha_{1}, \ldots, a_{k-1}=\alpha_{k-1}$.
Then $T_{g}=\left(\alpha_{0}, \ldots, \alpha_{k-1}\right)$. Since g is unique (given $\left.\left(\alpha_{0}, \ldots, \alpha_{k-1}\right) \in \mathbb{R}^{k}\right)$, therefore T is bijective. Thus

$$
S \cong \mathbb{C}^{k}
$$

It fellows that S is a k-dimensional vector space. We record this as a lemma.

Lemma: The space of solutions S is a k-dimensional linear subspace of V.

The tare then is to find k linearly independent solutions of the recurrence relation (with c_{0}, c_{k} non-zeno)

$$
\sum_{i=1}^{k} c_{k-i} a_{n+i}=0, \quad n \in \mathbb{N}_{0} .
$$

We will illustrate the method via an example. But first some terminology. The polynomial

$$
\Phi(x)=c_{0} x^{k}+c_{1} x^{k-1}+\cdots+c_{k-1} x+c_{k}
$$

is called the characteristic polynomial of the rearrence relation $\sum_{i=1}^{k} c_{k-i} a_{n+i}=0$.

Example: Let us solve

$$
a_{n+6}-16 a_{n+5}+105 a_{n+4}-362 a_{n+3}+692 a_{n+2}-696 a_{n+1}+288 a_{n}=0, n \in N_{0}
$$

The characteristic polynomial is

$$
\begin{aligned}
\Phi(x) & =x^{6}-16 x^{5}+105 x^{4}-362 x^{3}+692 x^{2}-696 x+288 \\
& =(x-4)(x-3)^{2}(x-2)^{3} .
\end{aligned}
$$

From an earlier remark, we know that $g_{1}(n)=4^{n}$ is a solution of $(A-4) f=0 ; g_{2}(n)=3^{n}, g_{3}(n)=n 3^{n}$ of $(A-3)^{2} f=0$; and $g_{4}(n)=2^{n}, g_{5}(n)=n 2^{n}, g_{6}(n)=n^{2} 2^{n}$ of $(A-2)^{3} f=0$. It then follows that $g_{1}, g_{2}, g_{3}, g_{4}, g_{5}, g_{6}$ are solutions of

$$
\Phi(A)_{f}=0 .
$$

Let S be the solution space of the above. We know S is six dimensional. It turns ont that g_{1}, \ldots, g_{6} are linearly independent and hence a general solution is of the form $p_{1} g_{1}+\ldots+p_{6} g_{6}$, ie.

$$
a_{n}=p_{1} 4^{n}+p_{2} 3^{n}+p_{3} n 3^{n}+p_{4} 2^{n}+p_{5} n 2^{n}+p_{6} n^{2} 2^{n}, n \in \mathbb{N}_{0}
$$

is the general solution, where $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6} \in \mathbb{C}$ are arbitrary constants.

Let us now return to the general questions. We wind to find k linearly independent solutions of the recurrence relation

$$
\sum_{i=1}^{k} c_{k-i} a_{n+i}=0, \quad n \in \mathbb{N}_{0} .
$$

Let λ be a root of the polynomial $\Phi(x)=\sum_{i=0}^{k} c_{k-i} x^{i}$. suppose the mutloplicity of λ is m . Then there is a polynomial Ψ of dequee $k-m$ such that

$$
\Phi(x)=\Psi(x) \cdot(x-\lambda)^{m} .
$$

Let g_{1}, \ldots, g_{m} be the functions on \mathbb{N}_{0} given by

$$
g_{j}(n)=n^{j-1} \lambda^{n}, \quad n \in \mathbb{N}_{0}
$$

We remarked that $(A-\lambda)^{m} g_{j}=0$ for $j=1, \ldots, m$.
It follows that

$$
\Phi(A) g_{j}=\Psi(A)(A-\lambda)^{m} g_{j}=0, \quad j=1, \ldots, m
$$

More generally, suppose $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$ are the distinct roots of $\Phi(x)$, with λ_{i} have multiplicity $m_{i}, i=1, \ldots, d$. Then the following is tome.

Theorem: In the above situation (with c_{0} and c_{k} nonzero), a function $g: \mathbb{N}_{0} \longrightarrow \mathbb{C}$ is a solution of the hounogeneons recurrence relation

$$
c_{0} a_{n+k}+c_{1} c_{n+k-1}+\ldots+c_{k-1} a_{n+1}+c_{k} a_{n}=0, \quad n \in \mathbb{N}_{0}
$$

if and only if g can be written unignely as a linear Combination of the functions $g_{i j}: \mathbb{N}_{0} \longrightarrow \mathbb{C}, j=1, \ldots, m_{i}$, $i=1, \ldots, d$, where

$$
g_{i j}(n)=n^{j-1} \lambda_{i}^{n}, n \in \mathbb{N}_{0}, j=1, \ldots, m_{i}, i=1, \ldots, d .
$$

In other words, there exist constants $p_{i j} \in \mathbb{C}$, such that

$$
g=\sum_{i=1}^{d} \sum_{j=1}^{m_{i}} p_{i j} g_{i j} .
$$

Remark: We will not provide a proof this, but the strategy is clear. One has to show that the $g_{i j}$ are solutions of our homogeneous recurrence relation, and that they are linearly independent. Since there are k of them, they will necessarily form a basis of the k-dimensional space S. Ho show that the $g_{i j}$ are in S is easy (we did some special cases of this). It is linear independence that is a little more difficult. We are not going to explore that in class, but it may be interesting for you to find a proof for yourself.

Here is a special case when one can show that $g_{i j}, j=1, \ldots, m_{i}, i=1, \ldots, d$ are linearly independent. Suppose $m_{i}=1 \quad \forall i \in\{1, \ldots, d\}$. Than $d=k$, and the k solutions in our list are $g_{1}, \ldots, g_{k}, g_{i}(n)=\lambda i^{n}, n \in \mathbb{N}_{0}$. Suppose

$$
p_{1} g_{1}+p_{2} g_{2}+\ldots+p_{k} g_{k}=0
$$

for some scalars $p_{1}, \ldots, p_{k} \in \mathbb{C}$. This means

$$
\lambda_{1}^{n} p_{1}+\lambda_{2}^{n} p_{2}+\ldots+\lambda_{k}^{n} p_{k}=0, n \in \mathbb{N}_{0}
$$

In particular, restricting owrselucs to $n=0, \ldots, k-1$ we get the matrix equation:

The coefficient matrix on the left is the Voider Monde matrix. Its determinant is well-kuonon to be

$$
\Delta=\prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right) .
$$

Since the λ_{i} 's are distinct, Δ is non-zeno, and hence
the coefficient maris above is inmatible. Thus

$$
p_{1}=p_{2}=\ldots=p_{k}=0,
$$

i.e., g_{1}, \ldots, g_{k} are linearly independent and hove form a basis of the k-dimensional vector space S.

