Nov 15216

Lecture 17

Recurrence (Chapter 9) Ecample: Let g: No -> C be a function, and c a non-zero complex number. Consider the recurrence relation $a_{n+1} - Ca_n = g(n)$, $n \in \mathbb{N}_0$ It is clear that if one knows as, then an for n 21 can be determined. for example, a: = cas+g(0), a= ca,+g(1) etc. suppose gin)= U & n C No. Then it is easy to see that an = ao ch, nE No. Indeed if n=0, this is a tantalogy. Suppose it is tome for some ne No. Then $a_{n+1} = \mathcal{L}a_n = \mathcal{L}(a_0 \mathcal{L}^n) = a_0 \mathcal{L}^{n+1}.$ Equations of the form and - can = 0, nGNo and called linear homogeneous equations. The advancement operator: A sequence of complex numbers (an) no can be reaarded as a function $f: \mathbb{N}_0 \longrightarrow \mathbb{C}$ namely the function

regarded as a function
$$f: N_0 \longrightarrow C$$
, namely the function
 $f(n) = a_n$, for $n \in N_0$. We can define the advancement operator
 $A: V \longrightarrow V$ where V is the set of functions of the form
 $f: N_0 \longrightarrow C$, by the rule $Af: N_0 \longrightarrow C$ is the function
 $(Af)(n) = f(n+1).$
In this notiation $A^k f$ is the function $(A^k f)(n) = f(n+k)$,

for all & E No. In porticular A' is the identity on V. In these terms the relation $a_{n+1}-can=0$ becomes (A-c)f=0, and the solution is $f(n)=dc^n$, $n\in \mathbb{N}_0$, where $d\in \mathbb{C}$ is a constant $(d=a_0)$.

The following example is at the next level of complication

Example: Consider the rearrance relation $a_{n+2} - 5a_{n+1} + 6a_n = 0 \quad n \in \mathbb{N}_0.$ If we know an for two successive n's, says ap and

approx of them we know the needs an, namely approx ince

$$a_{gr2} = 5a_{gr} - 6a_{g}$$
. It follows that one knows apple for
th 70, by repetially using the recorrence relation above.
In particular, if we know as and a, then we know
all the an, n & No.
Is before, identifying (2m)_{N20} with f: No \rightarrow C given
by f(n) = an, the above setation can be rewritten as
 $(A^{2-} 5A + 6)f = 0$.
i.e., as
 $(A^{-2})(A^{-2})f = 0$.
Note that if g and g are solutions of $(R^{2-}5A+6)f = 0$
then for $a, b \in C$, $ag + bg_{2}$ is also a colution, for
 $(A^{2-}6A + 6)(ag + bg_{2}) = a(R^{2-}5A+6)g_{1} + b(R^{2-}5A+6)g_{2} = 0$.
buppose g is a solution of
 $(A^{-2})f = 0$
and h a solution of
 $(A^{-2})f = 0$.
Then
 $(A^{-2}-5A+b)g = (A-3)(A-2)g = (A-3)(b)=0$
and h a solution of
 $(A^{-2}-5A+b)g = (A-2)(A-2)h = (A-2)(0)=0$.
This means g and h are solutions of the original reconnece
equation and $a_{12} - 5a_{12} + 6a_{12} = 0$.
This means g and h are solutions of the original reconnece
equation $a_{12} - 5a_{12} + 6a_{12} = 0$. The original reconnece
equation $a_{12} - 5a_{12} + 6a_{12} = 0$. The original reconnece
equation $a_{12} - 5a_{12} + 6a_{12} = 0$. The original reconnece
equation $a_{12} - 5a_{12} + 6a_{12} = 0$. The original reconnece
equation $a_{12} - 5a_{12} + 6a_{12} = 0$. The original reconnece
equation $a_{12} - 5a_{12} + 6a_{12} = 0$. The original reconnece
equation $a_{12} - 5a_{12} + 6a_{12} = 0$. The original reconnece
equation $a_{12} - 5a_{12} + 6a_{12} = 0$. The original reconnece
equation $a_{12} - 5a_{12} + 6a_{12} = 0$. The original reconnece
equation $a_{12} - 5a_{12} + 6a_{12} = 0$. The original reconnece
equation $a_{12} - 5a_{12} + 6a_{12} = 0$. The original reconnece
 $a_{12} - 5a_{12} + 6a_{12} = 0$. The bo
is a solution of our reconnece relation. Some our above
observations, this is a colution for acon radius of point reconsidered on the original conditions

aborn a we just argued, there initial conditions completely
then, as we just argued, there initial conditions completely
determine the solution to the recurrence relation. Note that
if
$$p^{2^n} + g^{3^n}$$
 is our solution then
 $p^+ g = d$ and $2p + 3g = \beta$.
This means
 $p^- 3d - \beta$ and $g = \beta - 2d$.
Thus $(3d - p) \cdot 2^n + (\beta - 2d) \cdot 3^n$ is the unique solution to
our recurrence relation with initial conditions $a_0 = d, a_1 \in \beta$.
The particular, every solution of the recurrence
relation
 $a_{122} - 5a_{124} + 6 = 0$
is g the form
 $a_{122} - 5a_{124} + 4 \cdot 3^n + 6 \cdot 3$.
Freque: Now consider the grample
 $a_{122} - 2r \cdot a_{124} + 3r^2 \cdot a_{12} = 0$, $n \in \mathbb{N}$.
The solution is a constant, with $n \neq 0$. For $f:\mathbb{N}_0 \longrightarrow C$, let
 $Af: \mathbb{N}_0 \longrightarrow C$ is $(Af)(n) = f(n+1)$, he can normal the above as-
 $(A^2 - 2r \cdot A + 3r^2)f = 0$.
 $Ar = pr^m$, $n \in \mathbb{N}_0$
where $n \in C$ is a constant two computation is
 $a_{12} - 2r \cdot A + 3r^2)f = 0$.
 $(A^2 - 2r \cdot A + 3r^2)f = 0$.
 $Ar = pr^m$, $n \in \mathbb{N}_0$
where p is an arbitrony (comples) constant. If the initial
and $a_1 = 3r$, then $a_{12} = pr^n$, $n \in \mathbb{N}_0$
 $a_{12} = 1$ and $a_1 = 3r$, then $a_{12} = pr^n$, $n \in \mathbb{N}_0$.
Then
 $f(n+2) - 2r \cdot f(n+1) + r^2 \cdot f(n)$.
 $= (n+2)r^{n+2} - 2r \cdot (n+1)r^{n+1} + r^2 \cdot (n)r^m$.

$$= 5^{102} ((n+2) - 2(n+1) + n) = 0.$$
This gives we a second solution. It follows that
 $g(n) = px^{n} + gnx^n$, $n \in 100$
is a solution of $an+2 - 2x an+1 + x^n an = 0$
for every divice if $p, q \in \mathbb{C}$. If we add initial conditions
 $a_0 = a$, $a_1 = B$
then we wish to choose $p, g \in \mathbb{C}$ 9t.
 $g(0) = a$ and $g(2) = B$.
Gen we find such p and q ? Not p and q must
interp.
 $p = a$ and $px + gx = B$
i.e. $p = a$ and $px + gx = B$
i.e. $p = a$ and $q = \frac{p-ax}{2r}$.
Thus, every solutions can be written in the form
 $px^n + gnx^n$, $n \in Bb$.
and if the initial conditions are $a_0 = a$, $a_1 = B$.
the englishments are the unique solution of
the argued earlier this is the unique solution of
the recurrence relation which x as obser and $n \in B$,
and $g_{1,...,g}$ by fourtients $g(n) = n^{1-1}x^n$, the
recurrence relation and cuery solution $x = f$ the
 $(A - x)^m f = 0$

(This is the same as $(A - r)^m f = 0$.) Then the equations $\Xi_{ij}^{m} = i j^{-1} r^{i} p_{j}^{i} \qquad \Xi_{ij=1}^{m} i r^{i} p_{j}^{i} = d_{i}^{i}, \quad i = 0, ..., m-1 \quad (0^{\circ} = 1 here)$ form a system of m linear equations in the m uknowns pis..., opm. It can be re-written as $\begin{pmatrix} a_{11} & \dots & a_{m_1} \\ \vdots & & \\ a_{1m} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} \mathbf{f}_i \\ \vdots \\ \mathbf{f}_m \end{pmatrix} = \begin{pmatrix} \mathbf{k}_0 \\ \vdots \\ \mathbf{k}_{m-1} \end{pmatrix}$ with a = (i-1)d 'or', i=1,..., j=1,..., m (with 0°=1). One shows (we won't), that the coefficient matrix is invertible and have the system has a unique colution for pi, ... , pm. // The general theory Let co, c, c, c, c, c, c C, with co = 0 and ce = 0. Let g: No -> C be a function. A recurrence relation of the born: of the form: (*) $C_0 Q_{n+k} + C_1 Q_{n+k-l} + \cdots + C_{k-l} Q_{n+l} + C_k Q_m = g, n \in \mathbb{N}$ ie called a linear recorrence relation. If we know & successive value of the an, say an, arti, ..., artk-1, then clearly one can work out artk forom the above equation (since co = 0), and in fact artn for all not k. In particular of we know as, ais ..., ak-1, then we know an for all nE No. Another way of phrasing what we just said is : The linear recorrence relation Coante + C, ante-1 + L2 ante-2 + ... + Ck+ anti + Ckan = g(n) together with the initial conditions as= do, a= di, ..., ak-i = dk-i (do, ..., db, EC fixed) has a unique solution.

Event: The set V of maps
$$f: N_0 \longrightarrow C$$
 is a vetor space
(i) infinite dimension). The absencement operator $A:V \longrightarrow V$ is
a linear map, and therefore so is any polynomial of the
form $d_0 A^{k} + d_1 A^{k-1} + \dots + d_{k-1} A + d_{k-1}, d_1 \in G_1 := 0, 1, \dots, k.$
The remonence relation (6) above can be servitten as
 $(G A^{k} + c_1 A^{k-1} + \dots + c_{k-1} A + C_k) f = g$. (28)
Let $\overline{\Phi}$ be the polynomial
 $\overline{\Phi}(N) = \sum_{i=0}^{k} C_{k-i} \times^i$.
Then (6) (or (28)) can be worthen as
 $\overline{\Phi}(A) f = g$. (28)
its be the polynomial $\overline{\Phi}(N)$ is called a boneganous recorrence
solution. The equation then is
 $\overline{\Phi}(A) f = 0$ (f)
Pecall that we have assumed that G and C_k are non-zero.
Let S be the solution. Since $\overline{\Phi}(A) \cdot V \longrightarrow V$ is
a linear operator, therefore S is a linear subspace of V,
being the mult space of the linear operator $\overline{\Phi}(A)$.
 $\overline{\Phi}(A) = 0$ (f)
Pecall that me have assumed that is dimear subspace of V,
being the mult space of the linear operator $\overline{\Phi}(A)$.
 $\overline{\Phi}(A) = 0$ (f)
Pecall that $\overline{\Phi}(A) = 0$ (f)
Pecall space of the linear operator $\overline{\Phi}(A)$.
 $\overline{\Phi}(A) = 0$ (f)
 $\overline{\Phi}(A) = 0$

$$S \cong C^{k}.$$

It follows that S is a k-dimensional vector space. We record this as a lemma.
Lemma: The space of solutions S is a k-dimensional dimeon subspace of V.
The task them is to find k linearly independent:
solutions of the recurrence relation. (with 6 cc won-zwo)
 $\sum_{i=1}^{k} C_{k-i} a_{n+i} = 0$, no No.
We will illustrate the method via an oxample. But first forme tenninology. The polynomial of the recurrence relations of the recurrence relation.
S(N) = Cost + c(X^{k-1} + ... + C_k, X + C_k)
in called the chosectivitie polynomial of the recurrence relation $\sum_{i=1}^{k} C_{k-i} a_{n+i} = 0$.
Example: Let us robue
 $a_{n+i} = 16a_{n+i} + 105a_{n+i} = 362a_{n+2} + 692a_{n+2} - 696a_{n+1} + 288a_n = 0, nENO
The distribution polynomial is $\sum_{i=1}^{k} (2i-3)^{2} (2i-3)^{2} (2i-3)^{2} .$
From an earlier remork, we beness that $g_{i}(n) = 4^{n}$ is a solution of $A_{i}(n) = 2^{n}$, $g_{i}(n) = n^{2} - M$ (A-3)²f = 0;
and $g_{i}(n) = 2^{n}$, $g_{i}(n) = n^{2}$, $g_{i}(n) = n^{2} - M$ (A-2)²f = 0.
It then follows the $g_{i}, g_{i}, g_{i}, g_{i}, g_{i}, g_{i}, g_{i}, g_{i}, g_{i} are solutions of $\overline{f}(A_{i}, f) = 0$.
Let S be the solution space of the above live horse S is airs dimensional solution is of the polynomial solutions of $\overline{f}(A_{i}, f) = 0$.
Let S be the solution is of the polynomial solutions of the solutions of the solutions of the solution is of the above. We have S is airs dimensional solution is of the polynomial solutions of the solutions of the solution of $\overline{f}(A_{i}, f) = 0$.$$

id as now return to the gassel question. We side to
find & linearly independent solutions of the remanence
relation

$$\sum_{i=1}^{k} C_{p-i} a_{n+i} = 0, \quad n \in \mathbb{N}_{0}.$$
Tet λ be a post of the polynomial $\overline{\Phi}(x) = \overline{\Sigma}_{i=0}^{k} C_{p,i} x^{i}$.
Impose the multiplicity of λ is in. Then there is a
polynomial Ψ of degree $k-m$ such that
 $\overline{\Phi}(x) = \Psi(x) \cdot (x-\lambda)^{m}$.
Let $g_{1,s}...,g_{m}$ be the functions on \mathbb{N}_{0} given by
 $g_{j}(x) = n^{j-1} \lambda^{n}, \quad n \in \mathbb{N}_{0}$
We remarked that $(A - \lambda)^{m} g_{j} = 0$ for $j = 1,...,m$.
St follows that
 $\overline{\Phi}(X) g_{j} = \Psi(X) (A - \lambda)^{m} g_{j} = 0, \quad j = 1,...,m$.
Hore generally, suppose $\lambda_{1}, \lambda_{2}, ..., \lambda_{d}$ are the distinct
roots of $\overline{\Phi}(x)$, with λ_{i} have multiplicity m_{i} , $i=1,...,d$.
Then the following is time.
There is a the above situation (with co and c_{μ} nongeneous
seconnece velocion
 $C_{0} a_{n+p} + C_{1} C_{n+q-q+1} + C_{p-q} a_{n+1} + C_{p} a_{n} = 0, \quad n \in \mathbb{N}_{0}$
if and only if g can be verither uniquely as a linear
combination of the functions $g_{ij}: \mathbb{N}_{0} \rightarrow \mathbb{C}$, $j=1,...,m_{i}$,
 $i=1,...,d$, where
 $g_{ij}(n) = n^{j-1} \lambda^{n}$, $n \in \mathbb{N}_{0}$, $j=1,...,m_{i}$, $i=1,...,d$.
 $g_{ij}(n) = n^{j-1} \lambda^{n}$, $n \in \mathbb{N}_{0}$, $j=1,...,m_{i}$, $i=1,...,d$.

Emerk: We will not provide a proof this, but the strategy is
clear. One has to show that the gip are solutions of our
homogeneous reverence relation, and that they are liverly
independent, live there are b of them, they will receasing form
a basic of the k-dimensional space S. To show that the
gip are in S is easy (we did some special cares of this).
It is linear independence that is a little more difficult. We
are not going to suppose that is clear, but it may be
interesting for you to find a proof for yourself.
Here is a special care when one can show that
gip j=1,...,mi, i=1..., d are linearly independent. Suppose
mi=1 4 is cf1...,dy. Then d=k, and the k solution
is our list are given of this means

$$\lambda_1^* p_1 + p_2 + \dots + p_n^* p_n = 0$$
, network
for some scelers $p_1..., p_k \in C$. This means
 $\lambda_1^* p_1 + p_2 + \dots + \lambda_k^* + p_k = 0$, network
 $\lambda_1^* p_1 + \lambda_2^* + p_2 + \dots + \lambda_k^* + p_k = 0$, network
 $\lambda_1^* p_1 + \lambda_2^* + p_2 + \dots + \lambda_k^* + p_k = 0$, network
 $\lambda_1^* p_1 + \lambda_2^* + p_2 + \dots + \lambda_k^* + p_k = 0$, network
 $\lambda_1^* p_1 + \lambda_2^* + p_2 + \dots + \lambda_k^* + p_k = 0$, network
 $\lambda_1^* p_1 + \lambda_2^* + p_2 + \dots + \lambda_k^* + p_k = 0$, network
 $\lambda_1^* p_1 + \lambda_2^* + \dots + \lambda_k^* + p_k = 0$, network
 $\lambda_1^* p_1 + \lambda_2^* + \dots + \lambda_k^* + p_k = 0$, network
 $\lambda_1^* p_1 + \lambda_2^* + \dots + \lambda_k^* + p_k = 0$, network
 $\lambda_1^* p_1 + \lambda_2^* + \dots + \lambda_k^* + p_k = 0$, network
 $\lambda_1^* p_1 + \lambda_2^* + \dots + \lambda_k^* + p_k = 0$, network
 $\lambda_1^* p_1 + \lambda_2^* + \dots + \lambda_k^* + p_k = 0$, network
 $\lambda_1^* p_1 + \lambda_2^* + \dots + \lambda_k^* + p_k^* = 0$
The coefficient matrix on the left is the Vender Monde
matrix. Its determinant is well thereone to be
 $\Delta = \prod (\lambda_1 - \lambda_1^*)$.
 $\lambda_1^* = \frac{\lambda_1^*}{\lambda_1^*} = \frac{\lambda_1^*}{\lambda_1^*} + \frac{\lambda_1^*}{\lambda_1^*} = \frac{\lambda_1^*}{\lambda_1^*} + \frac{\lambda_1^*}{\lambda_1^*} = \frac{\lambda_1^*}{\lambda_1^*} = \frac{\lambda_1^*}{\lambda_1^*} + \frac{\lambda_1^*}{\lambda_1^*} = \frac{\lambda_1^*}{\lambda_1^*} = \frac{\lambda_1^*}{\lambda_1^*} + \frac{\lambda_1^*}{\lambda_1^*} = \frac{\lambda_1^*}{\lambda_1^$

the coefficient matrix above is investible. Thus $\begin{array}{c} \varphi = \varphi = \dots = \varphi = D \\ \eta_1 = \eta_2 & \dots = \eta_k = D \\ \eta_k = \eta_k & \dots \\ \eta_k = \eta_$ i.e., g,,..., g are linearly independent and hence form a basis of the k-dimensional vector space S.