Newton's binomial theorem
We are going to define binomial cacfirients

$$
\binom{s}{n}
$$

for $s \in \mathbb{R}$ and $n \in \mathbb{N}_{0}$.
first observe that for $m, n \in N_{0}$, with $m \geqslant n$, the formula $P(m, n)=m!/(m-n)$! for the number of peruntation of length n in $[m]$ gives us
(i) $P(m, 0)=1, \quad m \in \mathbb{N}_{0}$
(ii) $\quad P(m, n)=m P(m-1, n-1), \quad m, n \in \mathbb{N}$.

Formula (i) is obvious and for (ii) observe that

$$
m P(m-1, n-1)=m \frac{(m-1)!}{[(m-1)-(n-1)]!}=\frac{m!}{(m-n)!}=P(m, n)
$$

Not we extend P to a fumelion

$$
P: \mathbb{R} \times \mathbb{N}_{0} \longrightarrow \mathbb{R}
$$

by insisting that
and
Note this in \mathbb{N}

1. $P(s, 0)=1 \quad \forall s \in \mathbb{R}$ and not N_{0}
2. $P(s, n)=s P(s-1, n-1) \quad \forall s \in \mathbb{R}$ and $\forall n \in \mathbb{N}$. since the second variable will eventually lint zero by repeatedly applying 2., using 1., the above defines $P(s, n)$ for all $\Delta \in \mathbb{R}$ and $n \in N_{0}$.

The binomial coreff $\binom{\Delta}{n}$ is then defined by the formula

$$
\binom{s}{n}=\frac{P(s, n)}{n!}, s \in \mathbb{R}, n \in N_{0}
$$

Example:

$$
\begin{aligned}
\binom{1 / 2}{3}=\frac{P\left(\frac{1}{2}, 3\right)}{3!}=\frac{1}{2} \frac{P\left(-\frac{1}{2}, 2\right)}{3!} & =\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right) P\left(-\frac{3}{2}, 1\right)}{3!} \\
& =\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) P\left(-\frac{5}{2}, 0\right)}{3!}=\frac{1}{16}
\end{aligned}
$$

Lemma: Let $s \in \mathbb{R}$. Then
(a) $\binom{s}{n}=\frac{s}{n}\binom{s-1}{n-1}, n \geqslant 1$
(f) $\binom{s}{n+1}=\frac{s-n}{n+1}\binom{8}{n}, n \in \mathbb{N}_{0}$.

Proof: Part (a) is obvious from the identity

$$
P(s, n)=1 P(s-1, n-1), n \in \mathbb{N}, s \in \mathbb{R}
$$

and our definition of binomial coefficients.
For (b), it is enough to prove that
(*) $\quad P(s, n+1)=(s-n) P(1, n), \quad n \in \mathbb{N}_{0}, \quad \Delta \in \mathbb{R}$.
Io r $n=0$, both sides of the above equal s, and hence the assertion is true.

Suppose the relation assented in (*) holds for lome $n \in \mathbb{N}_{0}$ and all $s \in \mathbb{R}$. Then

$$
\begin{aligned}
P(s, n+2) & =2 P(s-1, n+1) \\
& =s(s-1-n) P(s-1, n) \text { (by induction lyypotheis) } \\
& =(s-(n+1)) P(s, n+1),
\end{aligned}
$$

i.e. (x) hols s for $n+1$ and all $s \in \mathbb{R}$.

Theorem (Neatoris binomial Theorem):

$$
(1+x)^{s}=\sum_{n \geqslant 0}\binom{1}{n} x^{n}, \quad s \in \mathbb{R}, n \in \mathbb{N}_{0} .
$$

We won't be proving Norton's theorem.
Lemma: $\quad\binom{-1 / 2}{n}=\frac{(-1)^{n}}{4^{n}}\binom{2 n}{n}, \quad n \in \mathbb{N}_{0}$.
Proof: By inductions on n. When $n=0$, both sides equal 1, and this establishes the base case.

Suppose $\binom{-y_{2}}{n}=\frac{(-1)^{n}}{4^{n}}\binom{2 n}{n}$ for some $n \in \mathbb{N}_{0}$.
Then we have the following chain of equalities:

$$
\begin{aligned}
& \binom{-1 / 2}{n+1}=\frac{(-1 / 2-n)}{n+1}\binom{-1 / 2}{n} . \\
& =\frac{-(2 n+1)}{2(n+1)}\binom{-1 / 2}{n} \\
& =\frac{-(2 n+1)}{2(n+1)} \frac{(-1)^{n}}{4^{n}}\binom{2 n}{n} \quad \text { (by induction hypothesis) } \\
& =\frac{(-1)^{n+1}}{2\left(4^{n}\right)} \frac{(2 n+1)}{n+1} \frac{(2 n)!}{n!\sqrt{n!}} \longleftarrow \text { This combines to }(n+1) \text { ! } \\
& =\frac{(-1)^{n+1}}{2\left(4^{n}\right)} \frac{(2 n+2)}{(2 n+2)} \cdot \frac{(2 n+1)!}{n!(n+1)!} \\
& =\frac{(-1)^{n+1}}{2\left(4^{n}\right)} \frac{(2 n+2)!}{2(n+1)} \cdot \frac{1}{n!(n+1)!} \\
& =\frac{(-1)^{n+1}}{4^{n+1}} \frac{(2 n+2)!}{(n+1)!(n+1)!} \\
& =\frac{(-1)^{n+1}}{4^{n+1}}\binom{2(n+1)}{n+1} \\
& \text { q.e.d. }
\end{aligned}
$$

Condlory: $\quad\binom{1 / 2}{n}=\frac{1}{2 n} \frac{(-1)^{n-1}}{4^{n-1}}\binom{2(n-1)}{n-1}, \underbrace{n \geq 2}_{\uparrow}$
This is important. For $n=0,\binom{1 / 2}{0}=1$.
Proof: For $n \in \mathbb{N}$, we live

$$
\begin{aligned}
\binom{1 / 2}{n} & =\frac{1 / 2}{n}\binom{1 / 2-1}{n-1} \\
& =\frac{1}{2 n}\binom{-1 / 2}{n-1} \\
& =\frac{1}{2 n} \frac{(-1)^{n-1}}{4^{n-1}}\binom{2(n-1)}{n-1} \quad\left(n-1 \in N_{0}, \text { since } n \geq 1\right) .
\end{aligned}
$$

Let us calculate some generating functions using ow er results.

Theorem: The generating function for the number of lattice paths from $(0, D)$ to (n, n) for $n \in \mathbb{N}_{0}$ is

$$
\frac{1}{\sqrt{1-4 x}} \cdot \quad \text { (} 4 / \text { using diagonal lattice palter then }(0,0) \text { to }(2 n, 0)
$$

Prof: By Newton's binomial theorem

$$
\begin{aligned}
(1-4 x)^{-1 / 2} & =\sum_{n=0}^{\infty}\binom{-y_{2}}{n}(-4 x)^{n} \\
& =\sum_{n=0}^{\infty} \frac{(-x)^{n}}{4^{n}}\binom{2 n}{n} \cos ^{n} 4^{n} x^{n} \\
& =\sum_{n=0}^{\infty}\binom{2 n}{n} x^{n}
\end{aligned}
$$

as required.
We will skip section 8.5 on (the very interesting topic of) the partition of integers and visit the topic later if there is time. (Do read the fascinating topic by yourself in the meanwhile, If you have time.)
8.6 Exponential generating functions

The exponential generating function of a sequence $\left(a_{n}\right)_{n=0}^{\infty}$ is.

$$
E(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}
$$

There are very useful when the problem involves arrangements and not just selections. We will see examples of this later in this section. The rule of thant is that if strings are involved then one uses $E G F$, ($E G F=$ exponential generating function), ottwwise one uses usual generating functions. Sometimes problems are a mixture of the two situations or are of one form disguised as the other.

Examples:

1. Let $\left(a_{n}\right)_{n \geqslant 0}$ be the eequence given by $a_{n}=1, n \in N_{0}$. Its EGF is

$$
E(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=e^{x} .
$$

2. $e^{2 x}=\sum_{n=0}^{\infty} \frac{(2 x)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{2^{n}}{n!} x^{n}$. Therefore
$e^{2 x}$ is the $E G F$ for the number of binary strings of lengthen. (Cecal that binary string is a $\{0,1\}$-string and looks like $(1,0,0,1, \ldots, 0,1,1,0)$.)
$e^{3 x}$ is the $E G F$ of $\{0,1,2\}$-strings.
$e^{n x}$ is the EGF of $\{0,1, \ldots, n-1\}$-strings.
Multiplication of ELF
Let

$$
\begin{aligned}
& A(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n} \\
& B(n)=\sum_{n=0}^{\infty} \frac{t_{n}}{n!} x^{n}
\end{aligned}
$$

Then,

$$
\begin{aligned}
A(x) B(x) & =\sum_{n=0}^{\infty} \sum_{i+j=n} \frac{a_{i} b_{j}}{i!j!} x^{n} \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{i+j=n} \frac{n!}{i!j!} a_{i} d_{j} x^{n} \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{i=0}^{n}\binom{n}{i} a_{i} b_{n-i} x^{n} .
\end{aligned}
$$

So $A(x) B(x)$ is the $E G F$ for

$$
c_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k} .
$$

Example: suppose $i+j=m$, where $i, j \in N_{0}$. Let $n \in N_{0}$. Every $\{0,1, \ldots, m-1\}$-string of length n can be broken up into a $\{0,1, \ldots, i-1\}$-string ant $\{i, i+1, \ldots, m-1\}$-string.

Given a $\{0,1, \ldots, i-1\}$-string of length k and a $\{i, i+1, \ldots, m-1\}$ of length $n-k$, how many ways can we put than together s so that we have a $\{0,1, \ldots, m-1\}$-string of length n ? The trick is to pick k spots in a length n string to put the $\{0,1, \ldots, i-1\}$-string in (which we have been told has length k) and use the remaining $n-k$ spots of the length n striving to put the $\{\dot{0}, i+1, \ldots, m-n\}$-string of length $n-k$. In the picture below the pink dots represent the spots where we put the entries of the length $k\{0,1, \ldots, i-1\}$-string and the she dots represent the spots where we put the entries of the lengthier $n-k$ $\{i, i+1, \ldots, m-1\}$ - string. (The order in the sutstrings is respected.)
$\{i, i+1, \ldots, m-1\}$-string placed in blue spots

Since there are $\binom{n}{k}$ possibiblies for putting ow r $\{0,1, \ldots, i-1\}$ string, and t can be any muntor from 0 to $m-1$,

So the EGF for $(x+j)$-strings ia the product of the EGFs for i-strings and j-strings.

$$
e^{(i+j) x}=e^{i x} \cdot e^{j x},
$$

a formula we know well.
Example: What is the number of ternary strings of length w in which tho number of zeros in even?
Solution:
Do the problem separately for strings which have only 0 's in then, strings which have only 1's, and strings which only have 2's.

O: empty string, $00,0000, \ldots$
The EGF of ternary strings consisting of only $O^{\prime} s$ and with an even number of 0 's is

$$
\begin{aligned}
& 1+\frac{x^{2}}{2}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots \\
= & \frac{1}{2}\left(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots\right)+\frac{1}{2}\left(1-\frac{x}{1!}+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\ldots\right) \\
= & \frac{1}{2} e^{x}+\frac{1}{2} e^{-x} .
\end{aligned}
$$

1: If a ternary string of length n consists of only 1, then it has an even number of 0 's. Moreover there is only one ternary string if lenglt in which consists of only $1 / 8$.

The EGF I ternary strings consisting of only 1's and with an even number of $0^{\prime} s=e^{x}$.
2. Using the same reasoning as above eve get:

The EGF I ternary strings consisting of only 2 's and witt an even number of $o^{\prime} s=e^{x}$.

Thereppe the required exponential gevenating function
for our problem is

$$
\begin{aligned}
\frac{e^{x}+e^{-x}}{2} \cdot e^{x} \cdot e^{x} & =\frac{1}{2}\left(e^{3 x}+e^{x}\right) \\
& =\frac{1}{2} \sum_{n=0}^{\infty} \frac{3^{n} x^{n}}{n!}+\frac{1}{2} \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
= & \sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{3^{n}+1}{2}\right) .
\end{aligned}
$$

Answer: $\frac{3^{n}+1}{2}$.

Example: How many ternary strings of length n have at least one 0 and at lear one 1?
Solution:
The idea ia to find generating functions for the substings consisting of only $0^{\prime} 8$, of only 1 's, and A only 2 's, and then multiplying them.

Ir 0 's, when $n=0$ we canst have a string which has a 0 . For all otter n, we have exactly one possibility, and hance the corroponding sequence of possibilities in $(0,1,1,1, \ldots)$ which gives an EGF of $e^{x}-1$.

Io r exactly the same reason, the ELF for 1 's is $e^{x}-1$.
The EGF for the substringe consisting of only 2^{\prime} 's is e^{x}.
Taefore the EGF for our problem is

$$
\begin{aligned}
E(x) & =\left(e^{x}-1\right)^{2} e^{x} \\
& =\left(e^{2 x}-2 e^{x}+1\right) e^{x} \\
& =e^{3 x}-2 e^{2 x}+e^{x} \\
& =\sum_{n=0}^{\infty} \frac{3^{n}-2^{n+1}+1}{n!} x^{n}
\end{aligned}
$$

The answer is $3^{n}-2^{n+1}+1$.
We can shack if the above answer is right by using the
inchusiow-exclusion principle. Let X be the set of ternary strings of lengths n. Let A_{1} be the subset of consisting of strings with no O^{\prime} 's and A_{2} the subset of strings with no 1 's.

Cleanly $\left|A_{1}\right|=\left|A_{2}\right|=2^{u}$ and $\left|A_{1} \cap A_{2}\right|=1$. Also

$$
\left|\bigcap_{i \in \phi} A_{i}\right|=|x|=3^{n} .
$$

Thus by the inclusion-exclusion formula we get

$$
\begin{aligned}
\left|X-\left(A_{1} \cup A_{2}\right)\right| & =\sum_{S \subset\{1,2\}}(-1)^{|S|}\left|\bigcap_{i \in S} A_{i}\right| \\
& =\left|\bigcap_{i \in \phi} A_{i}\right|-\left|A_{1}\right|-\left|A_{2}\right|+\left|A_{1} \cap A_{2}\right| \\
& =3^{n}-2^{n}-2^{n}+1 \\
& =3^{n}-2^{n+1}+1
\end{aligned}
$$

exactly as before.
answer: $\quad 3^{n}-2^{n+1}+1$.

