Example: How many wang can we distrilente n identical apples to 7 distinct people, so that each person has at least one apple?

We save earlier in the come that the answer is $\binom{n-1}{6}$
if $n \geqslant 7$ (otthenwire, it is obviously zeno).

Seven is a large number. Let us first do the problem of distributing n identical apples to one person. The answer is an where

$$
a_{n}=\left\{\begin{array}{l}
0 ; n=0 \\
1 ; n \geqslant 1
\end{array}\right.
$$

Let $F(x)$ be the gevenating fraction of $(a n)_{n=0}^{\infty}$. Then

$$
\begin{aligned}
F(x) & =0+x+x^{2}+x^{3}+\ldots=x\left(1+x+x^{2}+\ldots\right) \\
& =\frac{x}{1-x}
\end{aligned}
$$

Suppose c_{n} is the numbers of ways of didis butting n apples amonget seven persons. Then

$$
c_{n}=\sum_{\substack{i_{1}+\ldots+i, i \\ i_{j} \geqslant 0}} a_{i_{1}} a_{i_{2}} \cdots a_{i_{7}} \text { \# if ways } A \text { distributing is apples }
$$

It follows from owe forme for the product of power series that the generation g function $G(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ is

$$
G(x)=\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{7}=F(x)^{7}=\frac{x^{7}}{(1-x)^{7}}
$$

Our permila above thew gives

$$
\begin{aligned}
G(x) & =x^{7} \sum_{m=0}^{\infty}\binom{m+6}{6} x^{m} \\
& =\sum_{m=0}^{\infty}\binom{m+6}{6} x^{m+7} \\
& =\sum_{n=7}^{\infty}\binom{n-1}{6} x^{n} \quad(\text { Set } n=m+7)
\end{aligned}
$$

It follows that

$$
c_{n}= \begin{cases}0 & n \leq 6 \\ \binom{n-1}{6} & n \geqslant 7 .\end{cases}
$$

Remark: If instead of insisting that every one of the seven persons gets at least one apple, we allowed the possibility that people can be left empty handed, then have is how we'd approach the problem: Again simplify to one peron ratter than seven. If $a_{n}=\#$ of ways of distintenting n apples to one pesos them under the newt rules, $a_{0}=1$, $a_{n d} a_{n}=1 \forall n \in N_{0}$. The corresponding generating function is $F(x)=\frac{1}{1-x}$, and for seven persons, the corresponding generating function is

$$
\begin{aligned}
G(x)=\frac{1}{(1-x)^{7}} & =\frac{1}{6!} \sum_{n=0}^{\infty} \frac{d}{d x^{6}} x^{n} \\
& =\sum_{n=6}^{\infty}\binom{n}{6} x^{n-6} \\
& \left.=\sum_{m=0}^{\infty}\binom{m+6}{6} x^{m} \quad \text { (set } m=n-b\right)
\end{aligned}
$$

And so the coifiverent of x^{n} is $\binom{n+6}{6}$, and this is the $\#$ of ways to instinbute n apples ownongst seven people without restrictions on the minima number of apples each person gits. Work out the details as in the example.

Example: In howe many ways can we collect 25 forints consisting of apples, oranges, pear, and bananas with the following restrictions:

- There has to be at least one banana
- Between three and seen pears
- No more than five apples.
$\left(\begin{array}{l}\text { thad "two" in lecture to } \\ \text { section 201, but have } \\ \text { changed it to "three" }\end{array}\right)$

Quick sole (with detains left to yon).
cenenating forntions for bananas: $\sum_{n=1}^{\infty} x^{n}=\frac{x}{1-x} \quad\binom{a_{0}=0}{a_{n}=1, n \geqslant 1}$
Cementing function for peans:

$$
\begin{aligned}
& x^{3}+x^{4}+x^{5}+x^{6}+x^{7} . \\
= & x^{3}\left(1+x+x^{2}+x^{3}+x^{4}\right) \\
= & x^{3} \cdot \frac{1-x^{5}}{1-x}
\end{aligned}
$$

Generating friction fer ranges: $\frac{1}{1-x}{ }^{1-x}\left(a_{n}=1, n \in \mathbb{N}_{0}\right)$
Genaunting for apples: $1+x+x^{2}+x^{3}+x^{4}+x^{5}=\frac{1-x^{6}}{1-x}$
Let $G(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ be the generating function of $\left(C_{n}\right)_{n \geq 0}$, where a_{n} is the number of ways of didonbuting n bornite with the above conditions. Then

$$
\begin{aligned}
G(x) & =\frac{1-x^{6}}{1-x} \cdot \frac{1}{1-x} \cdot \frac{x^{3}\left(1-x^{5}\right)}{1-x} \cdot \frac{x}{1-x} \\
& =\frac{x^{4}\left(1-x^{5}\right)\left(1-x^{6}\right)}{(1-x)^{4}} \\
& =x^{4}\left(1-x^{5}-x^{6}+x^{11}\right) \cdot \frac{1}{(1-x)^{4}} \\
& =\left(x^{4}-x^{9}-x^{10}+x^{15}\right) \cdot \sum_{n=0}^{\infty}\binom{n+3}{3} x^{n}
\end{aligned}
$$

Thus $c_{25}=\binom{24}{3}-\binom{19}{3}-\binom{18}{3}+\binom{13}{3}=525$.

Example: Find the number of solutions of

$$
x_{1}+x_{2}+x_{3}+x_{4}=45
$$

$\left.\begin{array}{c}\text { with } x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{N}_{0} \text { and such that } \\ x_{2} \geqslant 1,3 \leq x_{3} \leq 7, x_{5} \geqslant 9 .\end{array}\right\} \begin{gathered}\text { constants } \\ \text { (Had } 2 \leq x_{3}\end{gathered}$

$$
x_{2} \geqslant 1,\left(3 \leq x_{3} \leqslant 7, \quad x_{5} \geqslant 9 .\right.
$$

The trick is to fiend a formula for the genenatory function

$$
F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

where a_{n} is the number of solutions of $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=n$, with the constraints indicates above.

The four generating functions whore product we have to take are chert this!)

$$
\begin{aligned}
& F_{1}(x)=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \quad \text { (gan. fen. If \#I solis if } x=n, x \in \mathbb{N}_{0} \text {) } \\
& F_{2}(x)=\sum_{n=1}^{\infty} x^{n}=\frac{x}{1-x} \text { (gan.fen. of \# of shins of } x=n, x \in \mathbb{N} \text {) } \\
& F_{3}(x)=x^{3}+x^{4}+x^{5}+x^{6}+x^{7}=x^{3}\left(1+x+x^{2}+x^{3}+x^{4}\right) \\
& =\frac{x^{3}\left(1-x^{5}\right)}{1-x} \\
& \text { cgen.for. of \& } \operatorname{son} x \text { of } x=n, x \in \mathbb{N}, 3 \leq x \leq 7 \text {) } \\
& F_{4}(x)=\sum_{n=9}^{\infty} x^{n}=x^{a} \sum_{n=0}^{\infty} x^{n}=\frac{x^{9}}{1-x} \\
& \text { (gen. feel of \# i sons of } x=n, x \in N, x \geqslant a \text {) }
\end{aligned}
$$

We therefore have

$$
\begin{aligned}
F(x) & =F_{1}(x) F_{2}(x) F_{3}(x) F_{4}(x) \\
& =\frac{1 \cdot x \cdot x^{3}\left(1-x^{5}\right) \cdot x^{9}}{(1-x)^{4}} \\
& =\left(x^{13}-x^{18}\right) \sum_{j=0}^{\infty}\binom{j+3}{3} x^{j}=\sum_{n=0}^{\infty} a_{n} x^{n} .
\end{aligned}
$$

We have to find a_{45}. Clearly

$$
a_{45}=\binom{35}{3}-\binom{30}{3}
$$

