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Applicationsof Inclusion Exclusion

1 Surjectivemaps Let us find the numberof surjective maps
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None A b U An consists ofmaps f sub that there is
an ie l in not in the image of f In otherwords
A O U An is the set of maps that are not surjective where
the set of surjective maps from Eun to Eat is
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Thus the number of surjective maps from En tr En is
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2 Derangement A permutation of a set x is the setof
bijertic maps f X X Supper Mtn Then a permutation

of X is what was called a permutation of length n A

derangement of X is a permutation fix x smile that
f int tr for any REX

Let X en Let us calculate the number of
derangement of X To that end let P be the set of
permutations of X
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It is clear that the set of derangementof X is
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Thus

The number ofderangement of a setwith n elements
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3 Let d dm E IN We will show using I E that
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Apply the I E formula we get
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This was the original assertion
orfordi inanycommitgative

Remark The formula is time for di dm EIRVnot just for
dis due N But in the latter care a combinatorial proofis possible

4 The Euler d function Let me IN with n 72 Define
den of keen S t ged non L
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n and a relatively

prime
0 2,3 IN is called the Eulerd function

Some values of 4
412 I 0,4
d 4 2 1 3,4
0 iz a R X 450 K Q H X N Q R

For me IN n 2 let
Pen p E INI p is prime and divides n
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Lemma Let n 2 be an integer and pi Pr C pen
with the pi distinct Then the number of elements of
En divisible by pi for all i is
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Proof
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Thus fix een and moreover floe is divisible

by Pi for every i b ok
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then n
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Also if fix fly then p Ppn p pry which
means nay Thus f is one to one and gives a bijective

correspondence between Er and the set of elements in En
which are divisibleof Pi for all ie Ets ok Since first r
we are done 11

Theorem Let me IN n 2 and P pas Pmbe the distinct
prime divisors of n Then
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as required

Examples
1 The prime divisors of 12 22.3 are 2 and 3

0112 12 2 1 3 1
12 13 12412 4 Emiemanswer

2 Let us work out d 4503
450 2 32 52

So the prime divisors of 450 are 2,3 and5
01450 450 1221 331 1551 450 t z E 120

450 E 3 E
120

Note In order to calculate 01450 we did not have
to check the 450 elements in 450 and decidewhich
were relatively prime to 450



Chapter8 GeneratingFunctions

The generatingfunction of a sequence
Caoanaz Can Io an no

is the power series
Fini IE an N

Note The power series is not required to converge It is

a formal power series

Tonal power series algebra
hit CanÉ and b I be sequences F n Éanx andGM Ébun
Then
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where a If anbn k n 0 1,2

Note If Finland Gin are actual functions b is a Proposition

in Analysis Calculus Otherwise Cb is to be regarded as a

definition
Using b it is easy to see that
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Example hit Can o be the sequence an 1 t ne No
Cann8 11,1 1 Its generating fruition is

For Egan

Finn II R is called the infinite geometric series

Example The generating function of
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The series Itntnt the is called the finitegeometricseries

Here are some useful calculations
It is easy pyo see that
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with the understanding that the 0th derivative of a
function is the function itself

Fix ke IN Tom the above formula we see

that
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