Applications of Suchision-Exclusion

1. Sujectine maps: Let us find the number of surjective maps $f:[m] \longrightarrow[n]$.
Let

$$
x=\left\{f \mid f \text { is a map from }[m] \hbar_{s}[n]\right\} .
$$

Io r $i=1, \ldots, n$, let
$A_{i}=\{f \in X \mid f(k) \neq i$ for any $k \in[m]\}$.
None $A_{1} \cup \ldots \cup A_{n}$ consists of maps f encl that there is an $i \in\{1, \ldots, n\}$ not in the image of f. In other words $A_{1} \cup \ldots \cup A_{n}$ is the set of maps that ore not sunjectine, where the ret of sworjecture maps from $[\mathrm{m}] \mathrm{t}_{\mathrm{s}}[\mathrm{cc}]$ is

$$
X-\left(A_{1} \cup \ldots \cup A_{n}\right) .
$$

By the I-E formula

$$
\left|X-\left(A_{1} \cup \ldots \cup A_{n}\right)\right|=\sum_{S C[n]}(-1)^{|S|}\left|\bigcap_{i \in S} A_{i}\right|=\sum_{k=0}^{n}(-1)^{k} \sum_{\substack{S<G] \\ S \mid=k}}\left|\bigcap_{i \in S} A_{i}\right|
$$

Now $f \in \bigcap_{i e s} A_{i}$ if and only if $f(k) \notin S$ for any $k \in[m]$. This means $f \in \cap_{i \in S} A_{i}$ if and only if $f:[m] \longrightarrow[n], S$. This gives:

$$
\left|\bigcap_{i \in s} A_{i}\right|=(n-1 s 1)^{m} .
$$

Hence $\left|X-\left(A_{1} \cup \ldots \cup A_{n}\right)\right|=\sum_{k=0}^{n}(-1)^{k} \sum_{\substack{\mid S[=k \\ 8 \subset[n]}}\left|\bigcap_{i \in S} A_{i}\right|$

$$
\begin{aligned}
& =\sum_{k=0}^{n}(-1)^{k} \sum_{\substack{|s|=k \\
s<=j^{k}}}(n-k)^{m} . \\
& =\sum_{k=0}^{n}(-1)^{k}(n-k)^{m} \sum_{i s 1=k} 1 \\
& =\sum_{k=0}^{n}(-1)^{k}(n-k)^{m}(\tilde{k}) .
\end{aligned}
$$

Thus the number of surjective maps from $[m]$ is $[n]$ is $\sum_{k=0}^{n}(-1)^{k}(\tilde{k})(n-k)^{m}$. In perticartir this mounter is zero if $m<n .(!!)$
\# of subjective maps from $[m] t_{0}[n]=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{m}$.
2. Denangements: A permutation of a set X is the set of bijecture maps $f: x \longrightarrow x$. Supple $|x|=n$. Then a permutation of X is what was called a permentation of length n. A derangement of X is a penntation $f: x \rightarrow x$ sub le that $f(x) \neq x$ for any $x \in X$.

Lit $x=[n]$. Let $n a$ calcenlate the number of derangement of X. To that end, let P be the set of perindations of X.

For $i=1, \ldots, n$, set

$$
A_{i}=\left\{f \in P \mid f\left(x_{i}\right)=x_{i}\right\} .
$$

It is dear that the est of duangements of X is $P \backslash\left(A_{1} \cup \ldots \cup A_{n}\right)$.
Now for $S \subseteq[n]$, the set $\bigcap_{i \in S} A_{i}$ is essentially
the same as the set of bijecture maps

$$
[n], s \longrightarrow[n]-s
$$

ie. the set of permutations on $[u]-3$.
Thus $\left|\bigcap_{i \in S} A_{i}\right|=(n-|s|)$!
Non

$$
\begin{aligned}
\left|P \cdot\left(A_{1} \cup \ldots \cup A_{n}\right)\right| & =\sum_{S C[n]}(-1)^{|s|}\left|\bigcap_{i \in s} A_{i}\right| \\
& =\sum_{k=0}^{n}(-1)^{k} \sum_{\substack{\left.S<c_{n}\right] \\
|S|=k}}\left|\bigcap_{i \in s} A_{i}\right| \\
& =\sum_{k=0}^{n}(-1)^{k} \sum_{\substack{S<[n] \\
|S|=k}}(n-k)!
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{n}(-1)^{k}(n-k)!\sum_{\substack{s c[n] \\
i s i=k}} 2 \\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)!=\sum_{k=0}^{n} n!\frac{(-1)^{k}}{k!}
\end{aligned}
$$

Thus

The number of derangement of a set with n elements

$$
=n!\sum_{k=0}^{n}(-1)^{k} / k!
$$

3. Let $d_{1}, \ldots, d_{m} \in \mathbb{N}$. We will show, using $I-E$, that

$$
\left(d_{1}-1\right)\left(d_{2}-1\right) \cdots\left(d_{m}-1\right)=\sum_{s \subset[m]}(-1)^{|s|} \prod_{i \neq 5} d_{i}
$$

Let

$$
X=\left\{\left(x_{1}, \ldots, x_{m}\right) \mid x_{i} \in \mathbb{N}, \quad 1 \leqslant x_{i} \leqslant d_{i}, \quad i=1, \ldots, m\right\},
$$

For $i=1, \ldots, m$, set

$$
A_{i}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in X \mid \quad x_{i}=d_{i}\right\} .
$$

For $\quad S \subseteq[m], \quad \bigcap_{i \in s} A_{i}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in X \mid \quad x_{i}=d_{i}, i \in S\right\}$

$$
\text { Clearly } \quad\left|\bigcap_{i \in S} A_{i}\right|=\prod_{j \notin S} d_{j} \quad\left(\begin{array}{l}
\text { there are } d_{j} \text { choices for } \\
x_{j} \text { if } j \notin S, \text { and only } \\
\text { one choice for } x_{i}, j i j \in S
\end{array}\right)
$$

Also $X,\left(A_{1} \cup \ldots \cup A_{m}\right)=\left\{\left(x_{1}, . ., x_{m}\right) \in X \mid x_{i} \neq d_{i}\right.$ for any $\left.i\right\}$
Thus

$$
\left|X,\left(A_{1} \cup \ldots \cup A_{m}\right)\right|=\left(d_{1}-1\right) \ldots\left(d_{m}-1\right)
$$

for, if $\left(x_{1}, \ldots, x_{m}\right) \in X-\left(A, \cup \ldots \cup A_{m}\right)$ then lie choices for x_{1} are $\left\{1,2, \ldots, d_{1}-1\right\}$, for x_{2} are
$\left\{1,2, \ldots, d_{2}-1\right\}, \ldots$, for x_{m} are $\left\{1,2, \ldots, d_{m}-1\right\}$.
Apply the I-E formula, we get

$$
\left|X,\left(A_{1} \cup \ldots \cup A_{m}\right)\right|=\sum_{\delta \subset[m]}(-1)^{|s|}\left|\bigcap_{i \in s} A_{S}\right|
$$

i.e. $\quad\left(d_{1}-1\right)\left(d_{2}-1\right) \ldots\left(d_{m}-1\right)=\sum_{s \in[m]}(-1)^{|s|} \prod_{j \notin S} d_{j}$.

This was the original assertion.
Remark: The formula is tome for $d_{1, \ldots}, d_{m} \in \mathbb{R}, V_{\text {not }}$ just fer $d_{1}, \ldots, d_{m} \in \mathbb{N}$. But in the latter care a combinateri al poof is possible.
4. The ε user ϕ-function: Let $n \in \mathbb{N}$, witt $n \geqslant 2$. Define

$$
\begin{aligned}
\phi(n) & =\text { \# of } x \in[n] \text { s.t. } \operatorname{gcd}(x, n)=1 \quad \\
& =|\{x \in[n] \mid \operatorname{gcd}(x, n)=1\}| \quad
\end{aligned} \quad \begin{aligned}
& \operatorname{gcd}(x, n)=1 \\
&
\end{aligned}
$$

$\phi:\{2,3, \ldots\} \longrightarrow \mathbb{N}$ is called the Euler ϕ-function.
Some value n of ϕ :

$$
\begin{array}{ll}
\phi(2)=1 & \{(1), x\} \\
\phi(4)=2 & \{1, x, 3, k\} \\
\phi(12)=4 & \{1), x, x, k,(5), k,(7), x, x, N,(11), k\}
\end{array}
$$

For $n \in \mathbb{N}, n \geqslant 2$, let

$$
P(n)=\{p \in N \mid \text { pis prime and divides } n\} \text {. }
$$

egg.

$$
P(12)=\{2,3\}, P(126)=\{2,3,7\} .
$$

Lemma: Let $n \geqslant 2$ be an integer, and $\left\{p_{1} \ldots, p_{k}\right\} \subset p(n)$, witt the p_{i}, distinct. Then the number of elements of [n] divisible by p_{i} for all i, is

$$
\frac{n}{P_{1} \ldots \cdot P_{k}} \in N \text {. }
$$

Prof :
Let $\quad r=\frac{n}{p_{1} \cdots p_{k}}$.
For any $x \in[r]$, let $f(x)=p_{1} \ldots p_{k} x$.
since $x \leq r$, therefore

$$
f(x)=p_{1} \ldots p_{k} x \leqslant p_{1} \ldots p_{k} r=n .
$$

Thus $f(x) \in[n]$, and moreover $f(x)$ is divisible
by p_{i} for every $i=1, \ldots, k$
Connery if $y \in[u]$ is divisible by $p_{i} \forall i \in\{1, \ldots, k\}$, then $x=\frac{y}{R_{1} \ldots P_{k}} \in \mathbb{N}$ and $y=f(x)$.

Also, if $f(x)=f(y)$, then $p_{1} \ldots p_{k} x=R_{1 \ldots} p_{k} y$, which means $x=y$. Thus f is one-to-one, and gives a bijective correspondence between $\left[_{r}\right]$ and the set of elements in $[n]$ which are divisite of p_{i} for all $i \in\left\{\{, \ldots, k\}\right.$. Since $\left.\mid \operatorname{cr}_{r}\right\} \mid=r$, we are done.

Thurman: Let $n \in N, n \geqslant 2$ and $p_{1}, p_{2}, \ldots, p_{m}$ be the distinct prime divisors of n. Then

$$
\begin{aligned}
\phi(m) & =n\left(\frac{h_{1}-1}{P_{1}}\right)\left(\frac{P_{2}-1}{P_{2}}\right) \cdots\left(\frac{P_{m-1}}{P_{m}}\right) \\
& =n \prod_{i=1}^{m} \frac{P_{i}-1}{P_{i}} .
\end{aligned}
$$

Purr:
We have $\operatorname{gcd}(x, x) \neq 1$ if and only if $p_{i} \mid x$ for some i, and so

$$
\phi(n)=\mid\{x \in[n] \mid \text { pi } \nmid x \text { for all } i=1, \ldots, m\} \mid
$$

Lo $x=[n]$ and $A_{i}=\left\{x \in[n]\left|p_{i}\right| x\right\}, i=1, \ldots, m$.

$$
\begin{aligned}
\phi(n) & =\left|X-\left(A_{1} \cup \ldots \cup A_{m}\right)\right| \\
& =\sum_{S C[m]}(-1)^{|s|}\left|\bigcap_{i \in S} A_{i}\right| \quad \text { (Indusion-Exdusion) }
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{S \subset[m]}(-1)^{|s|} \frac{n}{\prod_{i \in S} p_{i}} \quad \text { (by Lemma) } \\
& =\frac{n}{R_{1} \ldots P_{m}} \sum_{S \subset[m]}(-1)^{|s|} \frac{p_{1} \ldots P_{m}}{\prod_{i \in s} P_{i}} \\
& \left.=\frac{n}{p_{1} \cdots P_{m}} \sum_{S \subset[m]}(-1)^{|s|} \prod_{i \notin S} p_{i}\right] \rightarrow \text { Example 3. }^{\text {From }} \\
& \left.=\frac{n}{p_{1} \ldots p_{n}}\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{m}-1\right)\right] \\
& =n \prod_{i=1}^{m} \frac{p_{i}-1}{p_{i}}
\end{aligned}
$$

ae reproved.
Examples

1. The prime divisors of $12=2^{2} \cdot 3$ are 2 and 3 .

$$
\phi(12)=12 \frac{(2-1)(3-1)}{(2)(3)}=\frac{12(1)(2)}{6}=4 \text {. } 5 \text { Same as }
$$

2. Let na work out $\phi(450)$.

$$
450=2 \times 3^{2} \times 5^{2}
$$

So the prime divisors of 450 are 2,3 and 5 .

$$
\begin{aligned}
\phi(450) & =450 \quad \frac{(2-1)}{2} \frac{(3-1)}{3} \frac{(5-1)}{5}=450\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{4}{5}\right)=120 \\
& =450\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{4}{5}\right) \\
& =120
\end{aligned}
$$

Note: In order to calentate $\phi(450)$ we did not have to check the 450 elements in [450] and decide which wore relatively prime to 450 .

Chapter 8. Generating Functions
The generating function of a sequence

$$
\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{n}\right)_{n=0}^{\infty}\left(=\left\{a_{n}: n \geqslant 0\right\}\right)
$$

is the power series

$$
F(x)=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Note: The power series is not required to converge. It is a formal power series.

Tonal power service algebra:
Let $\left(a_{n}\right)_{n=0}^{\infty}$ and $\left(b_{n}\right)_{n=0}^{\infty}$ be sequences; $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $G(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$.
Then
(a) $F(x)+G(x)=\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) x^{n}$
(b) $\quad F(x) \cdot G(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$
where $\quad c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}, \quad n=0,1,2, \ldots$
Note: If $F(x)$ and $G(x)$ are actual functions, (b) is a Proposition in Analysis/Calculus. Ofterwise (b) is to be regarded as a definition.

Using (b) it is easy to see that

$$
(1-x) \sum_{n=0}^{\infty} x^{n}=1
$$

(Use $\left(a_{n}\right)_{n=0}^{\infty}=(1,-1,0, \ldots, 0)$ and $\left(b_{n}\right)_{n=0}^{\infty}=(1,1,1, \ldots)$ and chert that $c_{0}=1$, but $c_{n}=0$ for $n>0$, where $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.)

I particular

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

Example: Lit $\left(a_{n}\right)_{n=0}^{\infty}$ be the sequence $a_{n}=1, \forall n \in \mathbb{N}_{0}$ $\left(a_{n}\right)_{n=0}^{\infty}=(1,1,1, \ldots)$. It generating function is

$$
F(x)=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} .
$$

$F(x)=\sum_{n=0}^{\infty} x^{n}$ is called the infinite geometric series.
Example: The generating function of

$$
\left.\left.\begin{array}{ll}
(1,1,1, \ldots, 1,0,0, \ldots) \\
0^{\text {the entry }}
\end{array}\right\} \begin{array}{ll}
n^{\text {the }} \text { entry }
\end{array}\right\} \begin{array}{ll}
a_{i}=1 & \text { for } 0 \leq i \leq n \\
a_{i}=0 & \text { for } i>n
\end{array}
$$

is

$$
F(x)=1+x+x^{2}+\ldots+x^{n}=\frac{1-x^{n+1}}{1-x}
$$

The series $1+x+x^{2}+\ldots+x^{n}$ is called the finite geometric series.
Here are some useful calcinations:
It is easy ${ }_{j_{k}-1}$ see that

$$
\frac{d^{k-1}}{d x^{k-1}}\left\{\frac{1}{1-x}\right\}=\frac{(k-1)!}{(1-x)^{k}}, k \in \mathbb{N}
$$

(with the understanding that the $0^{\text {th }}$ derivative of a function is the function itself).

Fix $k \in \mathbb{N}$. For the above formula we see that

$$
\begin{aligned}
\frac{1}{(1-x)^{k}} & =\frac{1}{(k-1)!} \frac{d^{k-1}}{d x^{k-1}}\left\{\frac{1}{1-x}\right\} \\
& =\frac{1}{(k-1)!} \frac{d^{k-1}}{d x^{k-1}} \sum_{n=0}^{\infty} x^{n} \\
& =\frac{1}{(k-1)!} \sum_{n=0}^{\infty} \frac{d^{k-1}}{d x^{k-1}} x^{n} \text { (formal differentiation) } \\
& =\frac{1}{(k-1)!} \sum_{n=k-1}^{\infty} n(n-1) \ldots(n-k+2) x^{n-k+1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(k-1)!} \sum_{n=k-1}^{\infty} \frac{n!}{(n-k+1)!} x^{n-k+1} \\
& =\sum_{n=k-1}^{\infty}\binom{n}{k-1} x^{n-k+1} \\
& =\sum_{m=0}^{\infty}\binom{m+k-1}{k-1} x^{m} \quad(\text { set } m=n-k+1)
\end{aligned}
$$

Thus

$$
\frac{1}{(1-x)^{k}}=\sum_{n=0}^{\infty}\binom{n+k-1}{k-1} x^{n}
$$

