The Luclusion-Exdusion formulas
Suppose A and B are finite sects.

It is clear that

$$
\begin{equation*}
|A \cup B|=|A|+|B|-|A \cap B| . \tag{1}
\end{equation*}
$$

Indeed $|A|+|B|$ counts the elernents in $A \cap B$ twice, and to compensate one needs to subtract $|A \cap B|$.

None suppose C is ounolter finite set. Then

$$
\begin{aligned}
|A \cup B \cup C| & =|(A \cup B) \cup C| \\
& =|A \cup B|+|C|-|(A \cup B) \cap C| \text { (by } O) \\
& =(|A|+|B|-|A \cap B|)+|C|-|(A \cup B) \cap C|
\end{aligned}
$$

Cagain by (().
Now $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$. Putting it together we get
(2)

$$
\left\{\begin{aligned}
|(A \cup B) \cap C| & =|(A \cap C) \cup(B \cap C)| \\
& =|A \cap C|+|B \cap C|-|A \cap B \cap C| \quad(\text { agami by }(i))
\end{aligned}\right.
$$

substituting the above in the relations $|A \cup B \cup C|=(|A|+|B|-|A \cap B|)+|C|$

- $|(A \cup B) \cap C|$, we get

$$
|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|
$$

It is not hand to see, using the above formulas that if D in yet anoltres finite set
(3) $\left\{\begin{aligned}|A \cup B \cup C \cup D|= & |A|+|B|+|C|+|D|-|A \cap B|-|A \cap C|-|A \cap D| \\ & -|B \cap C|-|B \cap D|-|C \cap D| \\ & +|A \cap B \cap C|+|A \cap B \cap D|+|A \cap C \cap D|+|B \cap C \cap D|\end{aligned}\right.$

$$
-|A \cap B \cap C \cap D|
$$

To see the above, while $A \cup B \cup C \cup D=(A \cup B \cup C) \cup D$, apply (i) (2) and (3) using the relation ($A \cup B \cup C) \cap D=(A \cap D) \cup(B \cap D) \cup(C \cap D)$.

The general result is
Theorem (I-E formula version I): Let $A_{1}, A_{2}, \ldots, A_{n}$ be fine sets. Then

$$
\left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leqslant i_{1}<\ldots<i_{k} \leq n}\left|A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{k}}\right| \text {. }
$$

Obervation: If $n=1$, the formula says $\left|A_{1}\right|=\left|A_{1}\right|$ which is a tautology. If $n=2$, the formant $\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\mid A_{1} \cap A_{2}$ which is really (1). If $n=3$, the former is $\left|A_{1} \cup A_{2} \cup A_{3}\right|=\left|A_{1}\right|+$ $\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{1} \cap A_{2}\right|-\left|A_{1} \cap A_{3}\right|-\left|A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{2} \cap A_{3}\right|$ which is (2). Chute that if $n=4$, you get formula (3).

Here is a reformulation of $I-E$ version I.
Version-II \cap I-E formula: Lit A_{1}, \ldots, A_{n} be finite sects.
Then

$$
\left|A_{1} \cup \ldots \cup A_{\sim}\right|=\sum_{\phi \neq S \subset[n]}(-1)^{|S|+1}\left|\bigcap_{j \in S} A_{j}\right| .
$$

It is clear that the two versions are equivalent.
The following is the most useful reformulation of the I- E forumla.

Version III of the I-E formula: Let x be a finite set and A_{1}, \ldots, A_{n} subsets $A X$. Then

$$
\left|X-\left(A_{1} \cup \ldots \cup A_{n}\right)\right|=\sum_{\delta \leq[n]}(-1)^{|s|}\left|\bigcap_{j \in S} A_{j}\right| .
$$

(What doss $\bigcap_{j \in \phi} A_{j}$ mean?)

The convention is that

$$
\bigcap_{j \in \phi} A_{j}=X .
$$

Proof I equivalence f version II and III
Version II \Rightarrow Version III:

$$
\begin{aligned}
\left|x-\left(A_{1} \cup \ldots \cup A_{n}\right)\right| & =|x|-\left|A_{1} \cup \ldots \cup A_{n}\right| \\
& =|x|-\left\{\sum_{\phi \neq S \subset[n]}(-1)^{|s|+1}\left|\bigcap_{j \in S} A_{j}\right|\right\} \\
& =|x|+\sum_{\phi \neq S \subset[n]}(-1)^{|s|}\left|\bigcap_{j \in S} A_{j}\right| .
\end{aligned}
$$

Now

$$
x=\bigcap_{j \in \phi} A_{j} .
$$

Hance we get

$$
\left|x \cdot\left(A_{1} \cup \ldots \cup A_{n}\right)\right|=\sum_{S \subset[n]}(-1)^{|s|}\left|\bigcap_{j \in S} A_{j}\right| \text {. }
$$

as required.
Version III \Rightarrow Version II
None $\left(A_{1} \cup \ldots \cup A_{n}\right)=X-\left[X-\left(A_{1} \cup \ldots \cup A_{n}\right)\right]$
so

$$
\begin{aligned}
\left|A_{1} \cup \ldots \cup A_{n}\right| & =|x|-\left|x-\left(A_{1} \cup \ldots \cup A_{u}\right)\right| \\
& =|x|-\left\{\left|\bigcap_{j \in \phi} A_{j}\right|+\sum_{\phi \neq s \in[n]}(-1)^{|s|}\left|\bigcap_{j \in s} A_{j}\right|\right\} \\
& =|x|-\left\{|x|+\sum_{\phi \neq S C[n]}(-1)^{|s|}\left|\bigcap_{j \in s} A_{j}\right|\right\} \\
& =-\sum_{\phi \neq S C[n]}(-1)^{|B|}\left|\bigcap_{j \in S} A_{j}\right| \\
& =\sum_{\phi \in S C[n]}(-1)^{|s|+1}\left|\bigcap_{j \in S} A_{j}\right| .
\end{aligned}
$$

Proof of the $I-E$ formula
Since all ressious are equivalent, it is enough to prove one version. Lit us prove nasion III.

The care whee $n=1$ is obvious (and in pent we observed this - see "Observation" after vesion-I).

We will prove version III by induction on n. suppree $n>1$ and we know the Atcrovem for any $Y \cdot\left(B_{1} \cup \ldots \cup B_{r}\right)$, with Y a finite set, B_{1}, \ldots, B_{r} subsets of Y, and $1 \leq r<n$.

Since $A_{1} \cup \ldots \cup A_{n}=\left(A_{1} \cup \ldots \cup A_{n-1}\right) \cup A_{n}$, we have

$$
\begin{aligned}
\left|x-\left(A_{1} \cup \ldots \cup A_{n}\right)\right| & =\left|x-\left(\left(A_{1} \cup \ldots \cup A_{n-1}\right) \cup A_{n}\right)\right| \\
& =|x|-\left|A_{1} \cup \ldots \cup A_{n-1}\right|-\left|A_{n}\right|+\left|\left(A_{1} \cup \ldots \cup A_{n-1}\right) \cap A_{n}\right|
\end{aligned}
$$

Set

$$
B_{i}=A_{i} \cap A_{n}, \quad i=1, \ldots, n-1 .
$$

Then B_{1}, \ldots, B_{n-1} are subsets of A_{n}, and the above formula can be re-weitten as

$$
\left|X-\left(A_{1} \cup \ldots \cup A_{n}\right)\right|=\left|X-\left(A_{1} \cup \ldots \cup A_{n-1}\right)\right|-\left|A_{n}-\left(B_{1} \cup \ldots \cup B_{n-1}\right)\right| .
$$

since $1-E$ (Vernon III) is valid fer $(n-1)$-fold unions (by ours induction enppothisin), we get

$$
\left|x-\left(A_{1} \cup \ldots \cup A_{n}\right)\right|=\sum_{T \in[n-1]}(-1)^{|T|}\left|\bigcap_{i \in T} A_{i}\right|-\sum_{T \subseteq[-1)^{\mid T-1]}}\left|\bigcap_{i \in T} B_{i}\right|
$$

None for $T \subseteq\left[\begin{array}{c} \\ -1]\end{array}\right.$

$$
\begin{aligned}
\bigcap_{i \in T} B_{i} & =\bigcap_{i \in T}\left(A_{i} \cap A_{n}\right) \\
& =\left(\bigcap_{i \in T} A_{i}\right) \cap A_{n} \\
& =\bigcap_{i \in T \cup\{n\}} A_{i}
\end{aligned}
$$

So we get
as requinet.
q.e.d.

$$
\begin{aligned}
& \left|X \cdot\left(A_{1} \cup \ldots \cup A_{n}\right)\right|=\sum_{\substack{T \subset[n] \\
n \notin T}}(-1)^{|T|}\left|\bigcap_{i \in T} A_{j}\right|-\underbrace{\sum_{\mathbb{E}}(-1)^{|s|-1}\left|\bigcap_{j \in T} A_{j}\right| \mid \cup\{n\}, ~}_{\substack{S \subset[n] \\
n \in S}} \\
& T \leqslant\{n-1] \text {. } \\
& =\sum_{S \subset[n]}^{1}(-1)^{|s|}\left|\bigcap_{i \in S} A_{i}\right|
\end{aligned}
$$

